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ABSTRACT OF THE DISSERTATION

Excitation and Nonlinear Evolution of the Modified Simon-Hoh

Instability in an Electron Beam Produced Plasma Column
by

Youichi Sakawa

Doctor of Philosophy in Electrical Engineering
University of California, Los Angeles, 1992
Professor Chan Joshi, Co—Chair

Professor Francis F. Chen, Co~Chair

An intermediate frequency (f. < f < f.) electrostatic instability has been ob-
served in an electron beam produced, cylindrical plasma column. We have iden-
tified this instability as a new instability, the Modified Simon-Hoh instability
(MSHI), which has an instability mechanism similar to the Simon-Hoh instability
(SHI). This instability can occur in a cylindrical collisionless plasma if a radial
DC electric field exists and if this radial DC electric field and the radial density
gradient are in the same direction. The origin of the DC electric field is found to
be the difference between the ion and the electron radial density profiles. In such
a plasma if the ions are essentially unmagnetized but if the electrons are magne-
tized, a velocity difference in the 8§ direction can arise because of the finite ion
Larmor radius effect. This leads to a space charge separation in the # direction.
The consequent azimuthal electric field Ky, and the enhancement of the density

perturbation by the Fj x By velocity occur in the same manner as in the SHIL

Xv



The instability frequency is decided by the ion azimuthal drift velocity. We have
mvestigated this new instability through experiments, theory and 2D computer
simulations.

We believe that a finite amplitude modified Simon-Hoh instability is driven
modulationally unstable by ion trapping effects leading to the excitation of M,
mode and the sideband modes M,. The final state can be a new periodic oscilla~
tion, the mode-locked state with f, = f, = f1/2. Such a periodic state is likely
to be further modulationally unstable to a low-frequency Ms; mode which will
then migrate and perhaps mode-lock at f;/2 and so on. Thus, what at first sight
appears to be a simple period doubling route of chaos follows a i'ather complex
path starting at the low-frequency modulational end and finaliy mode-locking at

the sub-harmonic,
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Chapter 1

Intro duction

Plasmas abound in turbulence as is evident from measurements on laboratory,
fusion, space and astrophysical plasmas. However, the transition from a simple
unstable equilibrium dominated by linearized instabilities with predictable thresh-
olds, k-value, frequencies, growth rates, etc. to a turbulent state in the plasma is
generally very complex. This is undoubtedly because compared to other systems
with infinite degrees of freedom (such as a hydrodynamic fluid, for example) a
plasma has a richer variety of collective modes of oscillation and a greater number
of nonlinear coupling mechanisms (some examples of the latter are particle trap-
ping, hydrodynamic nonlinearities, nonlinear resonant wave-particle interactions,
harmonic generation, wave breaking, etc.). Furthermore, in plasma experiments
one is typically unable to control the plasma parameters with enough precision
so that the subtle phenomena near the transition to turbulence may be studied.

The result has been that whereas the recent developments in nonlinear dynamics



and transition from order to chaos via the various well-known routes such as suc-
cessive period doubling, intermittency, two-frequency mechanisms, etc., has led to
a variety of experiments in fluids dynamics, chemical reactions, nonlinear optics,
laser physics, electronics, etc. there has been no study of comparable detail in the
case of waves in plasmas.

The work discussed in this thesis arose from an experimental program at UCLA
designed to understand the evolution of a plasma from one coherent state into tur-
bulence. The plasma system chosen for this study is an electron beam produced,
and magnetically confined plasma column. In the regime where the neutral gas
pressure is low and the exciting electron beam current is small, such a plasma
column is seen to be unstable to one mode. This new unstable mode is called
the “modified Simon-Hoh instability” (MSHI), which has an instability mecha-
nism similar to the Simon-Hoh instability (SHI). This instability can occur in a
cylindrical collisionless plasma if a radial DC electric field exists and if this radial
DC electric field and the radial density gradient are in the same direction. The
origin of the DC electric field is found to be the difference between the ion and
the electron radial density profiles. In such a plasma if the ions are essentially
unmagnetized but the electrons are magnetized, a velocity difference in the 8 di-
rectrion can arise because of the finite ion Larmor radius effect. This leads to a
space charge separation in the # direction. The consequent azimuthal electric field
Fg1 and the enhancement of the density perturbation by the gy x By velocity
occur in the sane manner as in the SHI. The instability frequency is decided by
the ion azimuthal drift velocity.

The specific process which leads to an eventual turbulent spectrum in the



plasma is the evolution of the MSHI through a series of modulational instabilities
involving ion trapping effects.

An interesting aspect of the present system is that the evolution of the fre-
quency spectrum of the unstable modes has many similarities to the usual fre-
quency doubling and the two-frequency routes to chaos in simple nonlinear os-
cillators. The detailed behavior is, however, much more complicated, involving
interaction between many modes whose “physics” is at present only qualitatively
understood.

We believe that such a scenario leading to a turbulent state in a plasma may
be generic to plasmas and applicable to many systems involving excitation of
coherent modes.

At the outset it must be stated that the work described in this thesis is still
very open-ended. The main contribution of our work is to document in detail a
plasma instability through experiments and explain it through theory and com-
puter simulations. The nonlinear behavior of this instability is experimentally
documented but as yet not fully understood. It presents a ripe topic for future

work.



Chapter 2

Experiments

2.1 Introduction

As stated earlier the ultimate goal of this project is to understand the evolution
of furbulence in one particular plasma system. In our case the plasma system
1s an electron beam ionized plasma column confined by an axial magnetic field.
Such a plasma is found to be extremely quiescent with thermally induced density
fuctuations, which are nearly 70 dB lower in amplitude than the peak instabil-
ity amplitude and close to the intrinsic noise level of the signal analyzer. The
idea is to excite a single coherent unstable mode in such a plasma and then to
follow its subsequent nonlinear evolution through wave particle and wave-wave
interactions into a turbulent state. In order to follow this nonlinear evolution the
plasma parameters have to be controlled with extreme precision. As will be seen
later in our beam-plasma system, at low neutral gas pressures and a low beam

density, we were able to excite a single low frequency unstable plasma mode. This



mode has been named the modified Simon-Hoh instability. There are no other
usual collective oscillations in our plasma such as the electron plasma and electron
cyclotron oscillations in the experimental parameter range. In fact, most of this
thesis 1s about the detailed experimental observation and documentation of this
new, rather remarkable, unstable mode and its theoretical interpretation. This
mode 1s robust in the sense that it is seen to persist over a very broad parameter
range without any interference from other fluid-like modes. Its nonlinear interac-
tion is mainly with plasma particles through trapping and other kinetic modes of
the plasma.

We now discuss the experimental apparatus and the experimental results of

excitation and nonlinear evolution of electrostatic instabilities.

2.2 Experimental Apparatus

Figure 2.1 shows the experimental setup of our beam-plasma system. A 1 cm
full-width half-maximum (FWHM) diameter Gaussian electron beam is injected
axially into one end of a 10 cm diameter, 180 cm long stainless steel vacuum
vessel, immersed in a DC magnetic field of up to 320 G. The distance between
the electron gun and a grounded endplate target (1.2 ¢m diameter) defines the
interaction region to be 80 cm. Figure 2.2 shows axial profiles of the magnetic
fields. In the interaction region AR/ B is less than 3 %. Most of our measurements
are conducted at B = 160 G (Im = 13 A). Argon gas is used for most of our
measurements, at a pressure range of 5 x 107° torr to 5 x 10~ torr, with a vacuum

base pressure of 4 x 1077 torr. We also tried Xe, Kr, Ny and He to determine the
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Figure 2.1: The experimental setup of the beam-plasma system. The plasma is

produced by collisional ionization of the neutral gas by the electron beam. The
ernissive probe, the one-sided probe and the energy analyzer are not shown.
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ion mass dependence of the instabilities.

Electrons are emitted from a directly heated spiral tungsten filament cathode
which is biased negative to a grounded anode. Electrons are accelerated through
a 1 cm diameter hole of the anode and collected by a grounded endplate target.
Figure 2.3 shows the electron beam current at the endplate target (I,) as a function
of the filament heating power (Pf) for three beam acceleration voltages {(Vp). Vp
1s variable up to 500 V. I, is governed by temperature limited emission at lower
Pr, and governed by space-charge limited emission at higher P;. Experiments
were performed at Vg = 230 V, [, = 10 ~ 1000 pA, which is in the temperature

limited emission region.

2.3 DC Parameter Measurements

Table 2.1 summarizes typical experimental parameters. The measurements of

several of these will be discussed in detail later in this thesis.

2.3.1 Density Measurements

Beam and plasma densities are measured by the Langmuir probes. Most of our
density measurements were conducted with a cylindrical probe (0.5 mm in di-
ameter and 2 mm in length). Since the typical gas pressures are low, probe
characteristics show a clear distinction (a pronounced knee) between the ion satu-
ration current ([,), the beam electron current (Iy,,,, ) and the electron saturation
current (/l.,). Figure 2.4 shows probe characteristics measured by a 2 mm x 2

mm disk probe (0.05 mm in thickness). When the probe is normal to the gun, we
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Gas used ‘ ‘Ar {He, N4, Kr, Xe)

Pressure P=5x10"%~5x10"% torr
Magnetic field B =40~ 280 G

Endplate current I, =10 ~ 1000 pA

Beam voltage Ve < 500 V

for Ar 2 x 107% torr, I, = 100 uA, Vg = 250 V, B = 160 G

Beam density ny & 10% cm™?

Plasma density n, 7 108 cm™?

Electron temperature T, ~4eV

on parallel temperature Ty > 0.03 eV

lon perpendicular temperature T = 5eV

DC radial electric field Ero = 4.7 V/em

Plasma potential difference AP =50V

Measured instability frequency fi = 48.25 kHz (m = I: measured)

lon cyclotron frequency fei = 6.1 kHz

[on plasma frequency fpi = 330 kHz

Electron ExB frequency fexe = 940 kHz (m = 1)

Electron diamagnetic frequency f7=3.0 MHz (m = 1)

Azimutal phase velocity wyfkey = 1.3 x 10° em/s {kp; = 2 em™1)
Axial phase velocity wifka =83 % 10° em/s (k. = 0.03 cm™!)
lon acoustic velocity ¢y = 3.1 x 10° cm/s

Electron thermal velocity vihe = 1.2 x 10% em/s

Collision frequency

Electron-neutral elastic[2] ven = 6.6 x 10 Hz

lon-neutral charge exchange(2, 3 Vin = 2.2 x 10% ~ 2.9 x 10° Hz
Electron-ion[d) Ver = 2.5 x 10% Hz

Collision mean-free-path

Electron-neutral elastic(2] Aen = 1.8 % 10° cm (o, = 8.4 x 107 cm?)
lon-neutral charge exchange(2, 3] A, = 1.7 % 10% cm (o, = 9.0 x 107 cm?)
Electron-ion{4) A = 5.4 % 10° em

Flectron Debye length Ap=0.15em «r center

: O b 27 ¢ ma
Larmor radius

Electron Are = 0.04 cm
lon A= 125 cem (T = 5eV)

Table 2.1: Typical experimental parameters
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observed,
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observe a clear beam component with the probe biased more negative with respect
to the be.am acceleration voltage, Vi, which is 250 V n this measurement. The
beam density is measured by this beam current. When the probe is 90 degrees to
the gun, a very small beamn component collected by the probe area of 0.05 mm
thickness x 2 mun length is observed.

In a magnetic field, the electron saturation current is reduced due to the re-
duced diffusion coefficient across the field[1]. Therefore, the absolute magnitude
of n, is not reliable. However, as long as B is constant, the relative magnitudes
of n, (as a function of radius r or beam current I, etc.) are thought to be cor-
rect. On the other hand, n; is overestimated in our measurement due to the thick
sheath effect{l]. Since we have to bias the probe more negative with respect to
Vg = 250 V to collect ions, we have applied the probe voltage V. = -280 V. With
such a large bias voltage, we expect to have an effective probe surface area larger
than the actual probe size because of the thick sheath. If we extrapolate the ion
current at the plasma potential, we find nearly an order of magnitude lower cur-
rent compared with the current at V,, = -280 V. Because of these uncertainties
in both the electron and ion density measurements by probe, we cannot deter-
mine the plasma densities from probe measurements alone. On the other hand
the absolute value of the difference between the electron and ion densities (n. -
n;) can be obtained from the measurement of the plasma potential ®. Since the
relative radial profiles of the densities are thought to be correct, we adjust the
peak density of the electrons and ions to fit the measured potential profiles.

Figure 2.5(a) shows the dependencies of n., n; and n, on I, taken at a radius

of 0.2 cm. The Ar pressure (P) dependences of n;, n. and n, with a constant I,

12
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are shown in fig. 2.5(b). This measurement is taken at the center of the beam. n;
is proportional to P, while n, and n; are nearly constant with P. Obviously, n; is
not equal to n.. As will be seen shortly this is thought to be due to the difference
in the radial profiles of the electron and the ions.

‘The measured magnetic field {B) dependence of the radial profiles of n;, n, and
ny are shown in fig. 2.6. At B = 160 G, n. and n, have 1.0 cm (FWHM) Gaussian
profiles , while n; shows a broad profile from the beam center to the chamber wall
(r =5 cm). The n, profile becomes broader at the lower B, while that of n, is
nearly unchanged with B. This is because ions are unmagnetized (ry; >> r,, where
rri is the ion Larmor radius and r, = 0.5 cm is the plasma size) even at B =
280 G, while electrons are weakly magnetized (rp, < r,, where rp, is the electron
Larmor radius} at the lower values of B but are strongly magnetized (rp. < r,)

for high values of B.

2.3.2 Plasma Potential Measurements

The difference between the n, and n; profiles implies the existence of a radial
DC electric field, FE,,, which we deduced by measuring the radial profiles of the
plasma potential, @, with an emissive probe [1]. @ is obtained from a measurement
of the floating potential of an emissive probe (0.05 mm diameter tungsten wire)
heated by a DC power supply. The I-V trace of the probe is taken to confirm that
the emission current is much larger than the collection current, and the floating
potential of the probe matches well with the plasma potential. The radial profiles

of ¢ as a function of I, are shown in fig. 2.7(a}, and the calculated maximum
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E,q is shown in fig. 2.7(b). We find that E,q increases monotonically with I,
and decreases with pressure P. The density difference n, - n; , calculated using
Poisson’s equation, is positive in the beam region and negative outside the beam.
This is qualitatively consistent with the radial profiles of n, and n; measured using

the Langmuir probes.

2.3.3 Temperature Measurements

The ion perpendicular temperature, T}, , is measured by an energy analyzer which
consists of two mesh grids and a collector plate. It is 1.5 cm in diameter and 1.25
cm long and faces radially inward on a radially movable shaft. The first grid is
left to float to repel most electrons and pass ions. The collector plate is biased to
V. = -67.5 V to collect ions and repel electrons. Figure 2.8 shows the measured
collector current {I.) versus discriminator voltage (V) and its derivative dI./dV}
for I, = 1 pA (fig. 2.8(a)) and I, = 7000 uA (fig. 2.8(b)}. Ti1 calculated from
the e-folding bias voltage in the dI./dV; curve is shown in fig. 2.9 as a function
of I,.'! The DC plasma potential difference, A®, between r = 2.0 cm and r = 0
cm measured by the emissive probe is also shown in fig. 2.9. A good agreement
between T;; and A® is obtained.

The radial position dependence of Ty, is shown in fig. 2.10. T}, is larger at
the central region. Although the parallel component of the ion temperature was

not measured, we expect Ty to be on the order of 0.03 eV (room temperature),

!Since the energy analyzer is not a directional energy analyzer, the measured T;, might be
overestimated due to an angular divergence of ions[5].
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because of the very large electron-ion equilibrium time?. Therefore, T;; # T. i)

The plasma electron temperature measured by the Langmuir probe is ~4 eV.

2.4 Instability Measurements

By varying the experimental parameters, the gas pressure (P} and the beam cur-
rent (/,) being the most sensitive, a low frequency mode My with a frequency f,
between the ion cyclotron {f.) and the ion plasma (fy;) frequencies (fu <€ fui), is
excited. Our mode measurements were made with unbiased, grounded cylindrical
probes (0.5 mm in diameter and ~2 mm in length). However, the same results,

with much reduced amplitudes, can be obtained with probes biased to give the ion

*It might be possible to have Ty > 0.03 eV because of (a) ion-ion scattering or (b) velocity-
space instability[6]
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Figure 2.11: Typical instability frequency spectra.

saturation current. The real-time oscillating signals were recorded with a transient
recorder (12 bits resolution and 2 MHz maximum sampling rate). The frequency
spectra were obtained both by performing Fast Fourier Transforms {FFT) on each
real-time signal and with a signal analyzer (Hewlett Packard model 3561A).
Figure 2.11 shows a typical frequency spectrum of the observed instabilities.
Even though numerous frequency peaks appear, they are identified as two fun-
damental frequencies {f; = 44.25 kHz and f; = 19.75 kHz), their harmonic
frequencies, and the various beat frequencies. In other words, the frequencies
of these peaks are linear combinations of f; and f, given by f = mf, + nfs

(m,n = 0,£1,%2,...). Here, f; = 6 kHz, f,; = 330 kHz, and f; < f < foi-
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We confirmed that no electron oscillations are excited in our experimental
parameter region. When we increase the gas pressure above 104 torr and the
beam current above 1000 uA, we could observe the electron plasma and cyclotron
oscillations.

A plot of fi, fr and f, = f; - f; versus I, is shown in fig. 2.12(a). Since f,
has a stronger I, dependence than fi, the ratio fi/f; decreases with I, as shown
in fig. 2.12(b). When f,/f; is 3, 2 or 1.5 (fy/fe = 1.5 implies f1/f, = 3} we
observe frequency locking. The amplitudes of M;, M; and M,, which are defined
as ny, ny and n, respectively, are shown in fig. 2.12(c). We see that n; increases
monotonically with I, except for I, = 3 ~ 4.2 pA, where M, and M, start growing
from noise level. Furthermore, n, is larger when f; and f; are locked. Larger n,
peaks appear at I, = 25 pA and 55 pA which correspond to fi/f: = 3 and 2,
respectively. At [, = 53.9 pA, M; and M, are locked at fi/fy = 2. At [, > 74
A, My and M, are unlocked and f; is now larger than f;/2. The largest locking
region occurs when fi/ f; = 1.5 as can be seen from fig. 2.12. Here f, is now larger
than f,. Both M, and M, disappear at [, = 410 pA. However, M; is coherent at
[, > 410 pA.

A sequence of frequency spectra and frequency locking for an [, scan is shown
in fig. 2.13. Frequency locking at fi/f; = 3.5 (fig. 2.13(a)), 3 (fig. 2.13(d)) and
2 (fig. 2.13(e)) are observed. As previously mentioned, when two frequencies are
locked, n; increases. The fi/f, = 2 locking interval is longer than for 3.5 or 3,
lasting from [, = 30 pA to 80 pA, above which M, disappears. When M; and
M, are unlocked, we find beat-frequency components. However, each component

is coherent and we don’t observe chaotic spectra in this sequence.
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The frequency locking sequence is also observed during pressure scans. Figure 2.14(a)
shows the Ar pressure dependence of f; and f,. In this measurement, I, was kept
constant. Therefore n, and n, are nearly constant, while n; is proportional tc P
(see fig. 2.5(b)). Figure 2.14(b) shows fy/f, versus P. Clear frequency locking at
fi/f2 = 3, 2.5 and 2 is observed. Comparing fig. 2.14(a) with (b), we see that f,
increases with P when no frequency locking occurs. In fig. 2.14(¢), ny and n; are
plotted versus argon pressure. Initially n, increases with P, then starts decreas-
ing at 3 X 107% torr. At this pressure, the frequency spectrum of M; becomes
broader, and the signal to noise ratio becomes smaller. Above 7 x 107° torr, the
system is turbulent and we can no longer distinguish the frequency peaks of M,
and M;. Therefore, in the region where M; and M, are coherent, ny increases
monotonically with P. On the other hand, n, is determined mainly by the fi/f.
ratio, as mentioned before. Figure 2.14(c) shows that an n, peak exists at f,/f,
= 3 and again at f,/f, = 2.

The ion mass dependence of fi and f; versus I, is shown in fig. 2.15(a). In
fig. 2.15{a), f; is replotted versus atomic mass (A;) for various I, values. It is
clear that f; has 1/v/M; dependence, while f, has no ion mass dependence. M,
dependence of n, is shown in fig. 2.16(&). We see that ny is larger for the heavier
gases. In fig. 2.16(b), we plot f; versus n,. We find that f; scales as \/n;.

Figure 2.17 shows the radial profiles of frequencies and amplitudes. Experimental
parameters are chosen so that no frequency locking occurs. As shown in fig. 2.17(a),
the frequencies are almost constant from the beam center to the chamber wall,
suggesting that the instabilities are global modes. Figure 2.17(b) shows that the

ny and n, peaks are at the beam edge, while the n, peak is at the beam center. We
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measured the radial profiles of ny, n, and n, for several experimental conditions
by varying I,, P, B, Vg and the gas species and with a positively biased (+30 V)

probe. We observed the same profiles every time, with different amplitudes.

2.5 Wave Propagation Measurements

‘The azimuthal wave number of My, ky;, was measured by three probes located at
the same radial and axial position. From the phase difference between the probes,
we concluded that M, has the azimuthal mode number m = 1 in the direction of
the £ x B drift or electron diamagnetic drift. Thus, kg = m/r, = 2 cm™!. The
k, of M; was determined by measuring the phase difference between the axially
movable probe and the reference probe as a function of the axial position of the
movable probe, to be of order k,; ~ 0.03 cm™'.

Since n; is larger than n,, we need to use a low pass filter to measure wave
numbers of M,. An active filter which we used has a frequency response of V., / Vi,
which falls 40 dBV {1/100) roughly 35 kHz from the cutoff frequency. The cutoff
frequency of the filter is variable from 10 kHz to 30 kHz. The azimuthal and axial
wave numbers of Ms, kyge and k,y respectively, were measured to be zero.

Figure 2.18(a) shows the phase shift between the radially movable probe and
the reference probe as a function of the radial position of the movable probe. The
reference probe is located at r = 0.7 cm and the same axial position as the movable
probe. A 180 degree phase jump was observed at r = 0.6 cm. Figure 2.18(b) shows

radial amplitude profiles of n; and n,, measured simultaneously with fig. 2.18(a).

It is found that at the radial position where the jump in phase occurs, ny shows
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s M, mode

- m = 1 mode

-k, = 003 cm™!?
o M, mode

— m = 0 mode
— radially standing wave
- kz'Z =0

o M, mode
- m = 1 mode

Table 2.2: Wave numbers of instabilities
a dip in radial profile. We measured the phase shift and n; profile simultaneously
for several different experimental conditions, and observed the jump in phase and
n, dip at the same radial position every time. We could observe the identical n,
profile and the phase shift between two probes with +30 V bias case. One possible
explanation is that M, is a standing wave in radial direction and r = 0.6 c¢m is
the position where n, is always zero.

Wave numbers of the side band mode, M,, whose frequency is f, = f; - fa,
were measured by choosing J, and P so that f, is lower than f; and using the low
pass filter. As a result of these measurements, ks, is m = | mode. Even when the
frequency locking at fi/f: = 3 occurs, M, is m = 0 mode and M, and M, are
m = 1 modes. These results are consistent with the radial profiles of M, and M,
shown in fig. 2.17, which shows an amplitude maximum of M, peak at r = 0.3 cm
while that of M, is at r = 0 cm.

Table 2.2 summarizes the measured wave numbers.

32



2.6 Nonlinear Evolution Measurements

We have shown the excitation of the M;, M, and M, modes. When f,/f; is 4, 3,
2 or 1.5, we have observed the frequency locking phenomena. In this section we
present a sequence of nonlinear evolutions when the frequencies are locked.

Figure 2.19(a) shows frequency spectra at f;/f; = 3.13. In the figure f; and
f2 are unlocked, and many beat frequency components, mf; + nf, (m,n==%1,
+2,...}, are observed. Note that each component is coherent. When the plasma
conditions are varied, the neutral density in this case, f; and f, are locked in
frequency at fi/f; = 3 {fig. 2.19(b)). Once f, and f, are frequency-locked, a
new mode, M;, appears at a frequency fz (fa < f2, fs < f1). This new mode
grows and it is seen in fig. 2.19(c) for the f3/f; = 2.28 case. We also find beat
frequency components, nf, +pfy (n,p = £1,%2,...}. By varying the gas pressure
slightly, we can control the frequency f3 with f; and f; locked in frequency. In
fig. 2.19(d), f3 is now locked at f3 = f,/2 = f/6. Once f; is locked, a new mode,
My, emerges at a frequency f; below f3, fo, and f; (fig. 2.19{(e)). We see that
fa is again frequency-locked with f3, f; and f; (fig. 2.19(f)) and Ms appears at
a frequency f5. In fig. 2.19(g), fs is locked at fs = f4/2 = fa/d = fo/8 = f1/24.
The nonlinear evolution which we have shown in fig. 2.19 is; {a} frequency locking
between f,i1 and f,, (b) an excitation of a new mode, M, 4., at a frequency f,.+2
(frorr < forr < fo) (n = 1,2,3}. Finally when n > 3, any frequency unlocking
can lead to a “chaotic looking” spectrum.

Figure 2.20(a) shows the case when f;, f, and f3 are locked while f; and f5

are unlocked in frequency. We find a broadband background noise appears with
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sharp f, f2, and f3 peaks. In fig. 2.19(b), f, and f, are also unlocked (f;/f; =
3.12).

We note that this spectral evolution can be controlled by changing either the
neutral gas pressure or the electron beam current. Furthermore the appearance
of each additional M, ,, mode requires smaller and smaller changes (increases) in
either the pressure or the current. As we shall see later the physical origin of those
M., +» modes at present is not understood. The fact that they have a frequency
frt2z < fap1 < fn and that their frequencies can continuously track the frequency
matching condition (f,, = fi £ fo, fo, = fi £ fa and f,,, = fi £ fay2 so on,

where f; .., is a sideband frequency of the M, ,; mode) implies that there must

n+2
be a whole sea or continuum of kinetic ion modes which can be excited via the
trapped particle modes (we discuss it in chapter 6), which gives rise to sideband

modes to M, at frequencies f; 4= f, where f, is the bounce frequency in the wave

frame.
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Chapter 3

Theory of the Modified

Simon-Hoh Instability

3.1 Introduction

In the previous chapter, we have shown experimental observations of intermediate
frequency instabilities; M, M, and M, modes. In this chapter we describe the
theory of the M, mode. As will be seen shortly, we have identified the M; mode as
a new electrostatic instability and named it as the modified Simon-Hoh instability
(MSHI).

This chapter is organized as follows: First, we review the experimental obser-
vations of electrostatic instabilities in section 3.2; section 3.3 describes the physical
picture of the MSHI; in section 3.4 and 3.5, the fluid and kinetic theories of the
MSHI are shown, respectively; section 3.5 describes the comparison of the MSHI

and other instabilities.
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3.2 Review of Experimental Observation of Elec-

trostatic Instabilities

Electrostatic waves excited by the interaction of an electron beam with a plasma
have been studied for many years, both for high frequency electron oscllations|[7]
and low frequency ion oscillations[8]-[14]. Matitti et al.[8] observed an instability
1n the vicinity of the ion cyclotron frequency, f, in their electron beam created
plasma. The instability mechanism was explained as the interaction between the
slow cyclotron wave on the beam and the forward plasma wave near f.; with warm
plasma electrons. Vermeer et al.[9] observed an instability near the ion plasma
frequency, f,, excited by the slow cyclotron wave on the beam. Papadopoulos
and Palmadesso[10] predicted the excitation of lower hybrid waves by the Lan-
dau growth mechanism when the injected beam velocity and the parallel phase
velocity of the instabilities satisfy the resonance condition, w/kj ~ v,. These
instabilities[8]-[10] are excited by the direct coupling between electron beams and
ion waves.

On the other hand, ion waves excited in the beam-plasma system by the £ x B
current have been reported{11]-[14]. Kitagawa et al.[11] studied the flute-like
drift instability in a hollow cylinder electron beam created plasma. Yamada and
Owens[12] observed the modified two-stream instability at the lower hybrid fre-
quency excited by the electron £ x B rotation. Wall et al.[13] observed the ion
Bernstein wave excited by the £ x B current in their Q-machine plasma and an
electron beam interaction experiment. Boswell[14] reported an instability that

arose from a Kelvin-Helmholtz instability driven by an £ x B shear flow. The
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instability frequency is the ion plasma frequency for the neutralized electron beam
with n; = n,.

Intermediate frequency {we € w <€ wy,) electrostatic instabilities driven by
the relative electron-ion drift across an external axial magnetic field have been
studied by many authors|[ll, 12, 15, 16, 17]. One such instability is the modified
two-stream instability (MTSI) with finite &, (k. < k,)[12, 15, 16], and the other is
the flute-like drift instability (FDI) with &, = 0, &, s 0[11, 15, 17]. Here, k, and k,
are parallel and perpendicular wave numbers, respectively, and &, = %i—’:’} . Both
of these have instability frequencies on the order of the lower hybrid frequency,
wr. Growth rates of the instabilities are also on the order of wpy.

Fridman predicted an Anti-drift Instability which is also an intermediate fre-
quency {we € w € we) electrostatic instability in a weakly ionized inhomoge-
neous plasma with cold (7; = 0) unmagnetized ions/18].

Simon{19} and Hoh[20] studied the Simon-Hoh instability (SHI) in a weakly
ionized, inhomogeneous, collisional, magnetized plasma under a strong electric
field perpendicular to the DC magnetic field. The SHI is unstable when the
density gradient and the electric field are in the same direction, and is triggered
by the difference between the electron and ion £ x B drift velocities caused by
collisions. The SHI was observed by Thomassen[21] in a hot cathode Penning
discharge plasma. In collisionless, weakly magnetized-ion plasmas (electrons are
magnetized) a similar instability is excited due to the slower ion drift velocity
caused by a large ion Larmor radius.

The modified Simon-Hoh instability (MSHI) which we observed in the electron

beam produced plasma does not correspond to any instability shown above, i.e.,
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no instability shown above agrees with the measured [, (fig. 2.12), P (fig. 2.14)
and B (Figure 4.1(c)) dependences of the instability frequency at wy € w € we,.
This instability occurs when there is a DC radial electric field in the plasma and
when this field and the density gradient are in the same direction. In such a
plasma the MSHI is driven unstable due to a difference between the electron and
ion azimuthal drift velocities. We point out that this new instability is similar to
the Simon-Hoh Instability (SHI)[19]-{21]). Therefore, first we discuss briefly the

physical picture of the SHI and then explain the MSHI.

3.3 Physical Picture of the MSHI

3.3.1 Simon-Hoh Instability

The SHI is an instability in a weakly ionized, collisional (w <€ ven, i) plasma
with an axial magnetic field and a radial DC electric field. See Table 2.1 for an
explanation of the various symbols and their typical values in our experiment. The
SHI occurs when both jons and electrons are magnetized, the density is nonuniform
(Vng # 0) in the direction of the electric field (£,), and when the sign of the
product of the electric field and the density gradient is positive (Vng - Eo > 0).
Figure 3.1 shows the physical picture of the SHI. The instability mechanism of
the SHI is as follow: Under the DC axial B, field and the radial E,q field, both

electrons and lons rotate with F.o X By drift velocity,

_ ETO/BO
VE; e —

B
2575

(3.1)
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Figure 3.1: The physical picture of the SHI.

where, | = e (electron) or i (ion}, Q; is the cyclotron frequency and 7j, is the

collision time with the neutral gas. Since 0272, > 1 and Q%72 > 1, we get

E 0

e = 3.2

VE B, (3.2)

Vg = w (33)
14 o

This difference between the electron and ion E x B drift velocities causes a charge
separation in the @ direction, and consequently produces an azimuthal electric
field, Es. When the plasma density is inhomogeneous and Vng - E.o > 0, then
the Egy x By velocity enhances the density perturbation. The instability frequency

of the SHI is on the order of vg. kp.
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3.3.2 Modified Simon-Hoh Instability

The modified Simon-Hoh Instability (MSHI) is different from the usual SHI in
that, (a) jons are unmagnetized and (b) both electrons and ions are collisionless.
Therefore, the azimuthal velocity of the ions is not expressed by eq. (3.3). A
velocity difference between electrons and ions is caused by the large ion Larmor
radius effect. In our experiment the ions are unmagnetized because of the small
axial B field. Furthermore, because of the large DC radial electric field, they move
radially in and out across the B field. Therefore, the ion orbit is nearly a straight
line. As the ions pass the vicinity of the center of the plasma, they are pushed
outwards due to the v x B force. Even though this perturbation of the ion orbit
from a straight line is small, we cannot neglect the curvature. If we average over
many lons, they always pass the center in the direction of the E,q x By drift. This
1s the ion azimuthal drift velocity which is smaller than the electron E,, x By
velocity. The slower azimuthal drift velocity of ions causes a charge separation in
the # direction; the consequent azimuthai electric field, £;; and the enhancement
of the density perturbation by the E;; x By velocity are the same as in the SHI

case.

3.4 Fluid Theory of the MSHI

In this section, first we derive a general expression for the electrostatic oscilla-
tions (eq. (3.10)), which includes effects of the B fields, DC electric fields, plasma
temperatures, density gradients and collisions. We show the dispersion relations

of several well known instabilities from the equation by choosing correct plasma
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conditions. Then we apply our experimental conditions to the equation and show

the dispersion relation of the MSHI.

3.4.1 General Fluid Theory

We consider the following model: We take a Cartesian geometry with a uniform
magnetic field Jgg = Byz. We look for electrostatic oscillations of potential ¢ and

amplitude n; given by,

¢ = g(z)ellhwvthv=d) (3.4)

Tty = ﬂ1($)8£(kyvy+szEWWt) (35)

and the fuctuating electric field is given by,

o dd o
Elx - —'El"; — qf’ 3 (3~6)
By = ~ik,é. (3.7)

The DC electric field and density are E{} = Fo# and ng = no{a}, respectively. The

density gradient is &, = |:2| = fg%’f« , where ny < 0. We use the equations of
motion

—

ov; N
”5’;2 + (Vio - Vivji] =

Sjenjo(gi + U;l X gg) + Sjenjl(E‘Q + ’U;“(} x g())

njomj[

1

kT Unee — kTl o,

&T; V0 — 6T =0y — myn v vy, (3.8)
0

and the continuity equation

anjl

ar (o Vi +no¥ i + (5 Vingo =0, (3.9)
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for plasma ions, plasma electrons and beam electrons, together with the local
approximation, ¢" = ¢' = 0 and n{ = n} = 0, where j =i (ion}, e (plasma electron)
and b (beam electron}, s; = 1, s, = s, = —1, v; is the collision frequency. Since

collisions in the perpendicular equation give classical diffusion which is negligible,

we consider collisions only in the 2 direction. We find,

My K sifkniky /o
i 8eQ e ) Y (3.10)
njo My Ly AN DL '
myla?-Q3 Wi @ -Q2

where, (); =| s;eBp/m; | is the cyclotron frequency and uw; = w — k- vjo. The drift

term & - vjp is expressed as

j;' UZG = kzvbeam + kvaxBe + k‘yvbd = kzvbeam + Wegp + w; (311)
E' U;O - kvaxBe + kyved = Wge + w; (312)
E ‘Ui = kvaxBi + kyvgd = W+ W (313)
where wg; = k,vExpy is the £ x B drift frequency and w} = kyvjq = —s; Ji-knjky

is the diamagnetic drift frequency. For convenience we use wg and w* for the
electron £ x B and the electron diamagnetic drift frequency, respectively.

Before applying eq. (3.10) to our experiment, we derive some well known dis-
persion relations from it for several different plasma parameter regions. First, we

show the density-potential relations for plasma electrons and ions.

l. Electrons

Consider magnetized electrons (©? < Q?)}. Equation (3.10} is reduced to

o k2 52 knek
Nep _ _fé ;‘[“’f‘z’%" t s mﬂey} (3.14)
== T T k2 k2 _ knek ' )
Teen el — ?—n"[—ﬁ% + D2 vl azﬂey]
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(a) When T, ~ 0, the square bracket in the denominator of eq. (3.14) is
neglected. Together with v, ~ 0, we find

Ney eqi[kg k2 4 beneky

02T o

], (3.15)

Neg m
where @ = w — wg.
i. When k,. =~ 0, this reduces to

Net - 6¢{k_3 . _ké‘
Q2 @t

1 (3.16)

e m

ii. When &, o~ 0, this reduces to

et fﬁ[ﬂ; + kne,fy]
neg  m §12 0.0

(3.17)

(b) When T, 5 0 and ¢lk2 < Q2 (¢ = T./m), we neglect the first term in

the square bracket in eq. (3.14)

T k2 kpek
nei eqs ﬁ[!zg-l-:ue&:i - Lg;)ey] 3 18
mogEE AL o
el iy LN 0.

where © = w — wg — w*.
i. When &/k, < ¢, and v, =~ 0; electrons can freely move along the
B field and establish a thermodynamic equilibrium. Since the first
term in the square bracket in eq. (3.18) is dominant, it is reduced

to the Boltzmann relation

net _ €9
en Te

(3.19)

il. When v, ~ 0 and k, ~ 0; we find the modified Boltzmann relation

for the k, = 0 case

Ney € W

Nep Tew—wg’

(3.20)
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i, When v, >» @ and k, s 0; one finds the modified Boltzmann

relation
na _ed W +ik§-c§/ve ’ (3.21)
Nep 1o w —wpg + tkZc2 /v,
where ¢ = T./m.
2. lons
When T: =0, v; = 0 and & - v}y ~ 0 eq. {3.10) is reduced to
na _ ed. ki Ak A kniky, fw
o - Te {wz - Q? uﬂ - w"" — Q? ], (322)
where ¢2 = T, /M.
(a) When ions are unmagnetized {w > (1;), this reduces to
‘ b 2k?
06k (3.23)

nig e w?
(b) When ions are weakly magnetized {w > ;) and k, > k,, k,;, this

reduces to

212
251 % Csky

—_— . 3.24
o dew? — (12 ( )
{c) When ions are strongly magnetized (w < ;), this reduces to
212 22
ny  ed. Cki cEkP O wx 3
P £0 SRy | GR w0 (3.25)
ng A w? w

where we assumed k,; = k,..

i. When k,/k, > w/Q; or the ion Larmor radius for T, is small (b =
c2k2/QF < 1), the first term on the right hand side of eq. {3.25) is

neglected and we find

S% 9T, (3.26)

Ei_ = %[Cgki + ﬁ

nig  le w? W
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ii. When k,/k, < w/Q;, we find

ng _ ed, cikl w*

1. (3.27)

ni A, §F w

Now by using the equations shown above together with the plasma approxima-

tion (ne1 == n;1) or Poisson’s equation, we derive well known dispersion relations.

e When both electrons and ions are magnetized (w < ; < Q)

— When the axial ion motion is important, and ¢, is large enough to

satisfy the Boltzmann relation for the electrons (even though k, # 0);
eq. (3.19) and eq. (3.26) together with the plasma approximation give

a dispersion relation for the collisionless drift wave[22]
W —wrw — k2 = 0. (3.28)

When electron collisions (electron-neutral or electron-ion collisions)
are important while the ion axial motion is unimportant, the modi-
fled Boltzmann relation (eq. (3.21)) and eq. (3.27) together with the
plasma approximation give the dispersion relation for the collisional
drift wave[4]

W +ioy{w —w™) =0, (3.29)

k2 .9, .
where o) = 2 %% and b« 1 is assumed.
1 ky Ve

¢ When electrons are magnetized while ions are unmagnetized (); < w < .)

— When T, 2 0 and electron collisions are unimportant

* When k,. >~ 0, eq. (3.16) and eq. (3.23) together with Poisson’s

equation give the modified two-stream instability[12, 15, 16].
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* When k, >~ 0, eq. (3.17) and eq. (3.23) give the flute-like drift
instability[11, 15, 17].
~ When T, # 8, kne £ 0
* When electron collisions are unimportant and £y = 0, eq. {3.20)

and eq. (3.23) give the stable anti-drift mode[18]

71,2
cik

*

W=

(3.30)

* When electron collisions are important (w < k¢ /v,) and Ey = 0,

eq. (3.21) and eq. (3.23) give the lon-sound instability[22]

w R oy (1 + tw v, /2k2c2). (3.31)

3.4.2 MSHI Theory

Now we apply our experimental conditions to eq. {3.10). In our experiment the
following plasma conditions are present; (a) electrons are magnetized while ions
are weakly magnetized (; < w <« ¢k, € 1.}, (b) ions and beam electrons are
cold (T}, Ty ~ 0) while plasma electrons are not (7, # 0), (c) the plasma is weakly
ionized, however, the collisions with neutral atoms are negligible (ven, vy = 0),
and (d} ke = k. = kb, 2> k,, k,;. Plasma electrons are expressed by the modified
Boltzmann relation, eq. (3.20); beam electrons follow eq. (3.15) with the third
term in the square bracket being dominant because of small k, and large Q.;
plasma ions are reduced to eq. (3.24) with non-zero E x B drift term. These

relations are given as

*>

mo_ ORuky €9 i (3.32)

_ == y
Tipo moowy Te W= W - kzvbeam
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N1 ep  w*

- = T oo (3.33)
272
g e ek
JALL I _FE e U2 5, (3.34)
Mo Te (w—wpgi)? — 8
where Vyeqr, is the beam velocity, wf = w* and wgy = wp.
Plasma Approximation
For quasineutral perturbations, we take n.; 4 ny; = n;;, and we get
B N (- A . (3.35)
wan (], a = -
k2A% W Wp W — wWg — kVheqm (w—wg)? —QF

where Ap = /T, /47n.e? is the electron Debye length and a = nyg/nio. When
a € 1, neglecting the beam term!, we obtain,

2
i Ved ky _ Wp,;

k;.)\% w—wg - (w —_ w;.;z-)2 - Q? (336)

Applying eq. (3.36) to cylindrical geometry with weakly magnetized ions (Q,; <

w) as
1 W w,

= ; 37
k%A%w —- W (w —LUQ,'):"' (3 )

where w* = vyuky and wg = UgExpe.ks. Since jons are weakly magnetized, we
replaced wpg; with wg;, which is the mean azimuthal ion drift speed. Equation

(3.37) is solved to give

ek}
wr = kgvg + Do 2 kgvgi, , (3.38)
— ; 4k4 2;62 _ ;
wr = \/cgkg(""ﬁ’ww” -2 \/Cs owe = woi) (3.39)
W w

1As far as the Simon-Hoh instability mechanism is concerned, i.e., a charge separation in
the ¢ direction, the consequent azimuthal electric field £y, and the enhancement of the density
perturbation by the Ejy; x By drift, the beam term does not affect the instability.
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This shows that when vg; < E,o/ By, we can have an excitation of a fluid instability.
Note that the perpendicular phase velocity is nearly vy; with a small correction

due to the second term.

Poisson’s Equation

Now we apply eq. (3.33) and eq. (3.34) o Poisson’s equation
~ V%% = dre(ni — net), (3.40)

where we neglected the beam components. Applying this plane geometry result
to the cylindrical geometry we find

1 wgi 1 w™

- ) 3.41
(w - LU@,')Q kgx\sz —wg ( )

where we neglected ;. The roots for this dispersion relation are expressed by the
Buneman instability type solution, i.e., the growth of the instability occurs as a
result of the interaction between the fast (positive energy) wave on the ions and
the slow {negative energy) wave on the electrons[4]. In the case of the M5HI, fast

and slow ion waves

W = kg?)y,' + Wiy (34.2)
and a slow electron wave
w*
— e %
W /C,ng kg/\%, (3 {3)

interact together. Figure 3.2 shows the real part wh = wr/Q; {fig. 3.2(a)) and the
imaginary part wp = wy/8; (fig. 3.2(b)) of the iﬁstability frequencies of eq. (3.41)
as a function of &' = kyvg /). Since kg is fixed to the m = 1 mode, we consider

that variations in &’ are due to variations in vg and treat w*/k%A% as a constant.
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Figure 3.2: Dispersion relation of the MSHI. (a) The real part and (b) the imagi-
nary part of the instability frequencies.
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When k' < 0 or &' > 1250, there are three real frequency roots which indicate that
the plasma is stable. While at 0 < &’ < 1250, we find only one real frequency root
and two complex frequency roots, which correspond to a growing wave (wy > 0)
and a decaying wave (wy < 0). In our experiment, ¥’ = 166 and there exists
an unstable root. Note that at &' < 1100, wg of the unstable root is expressed
exactly as wp = kgvg;, which is the same as the plasma approximation result.
Aberration from the wp = kyvg; occurs when w*/k3A% < kyug, or k303 > 1. This
is the same condition as the case when the plasma approximation is not valid. In
our experimental conditions, since w*/kA\Y > kyvp is always satisfied, the plasma
approximation gives correct results. Note that in the case kyvg; = 0, the maximum
growth of the unstable root occurs when w = kyvg > w,;. This root corresponds

to the flute-like drift instability[11, 15, 17].

3.5 Kinetic Theory of MSHI

Now we consider kinetic effects on lons. Note that in the actual experiment, jons
have large perpendicular excursions in the electrostatic well created by the mag-
netized radially localized electrons. The ion density response must therefore be
obtained from an appropriate Vlasov equation. The unperturbed ion distribution
fio 18 & function of the constants of motion, i.e. the perpendicular and parallel
energies Wi = (M/2)(7? + r20% + e®(r)) , W = (M/2)3? and the 8 - canonical
momentum Py = Mr2(§+,/2) where ; = eB, /M is the ion cyclotron frequency.
Since the lon density is nearly uniform in space, f; may be chosen as a function of

W and Wy only. The perturbed Vlasov equation may now be solved in principle
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by following the characteristics:

t € tigh ! _B_-flf_ !
fa == [ SEGE), )52 (3.44)

and the density perturbation obtained by the equation n; = [ f;;d*v.«The exact
eigenmode problem is quite complex because of the complicated zeroth order ion
orbits (determined by ®(r) and By) and the radially non-local response of ions
which leads to integrodifferential operators. Considerable insight into the new
physical effects introduced by large orbit excursions may however be obtained
from an approximate kinetic theory which uses harmonic orbit approximations
(exact for a parabolic potential well) and an appropriately averaged local radial
response for the ions.

The unperturbed trajectory of ions is determined from a solution of the equa-

tions
d—‘
Al 4
=0 (3.45)
W e x 2) + 22 (3.46)

When By is large and ions are magnetized, the second term in the right hand side
of eq. (3.46) represents the £ x B drift term. On the other hand, when By is small
and ion orbits are mainly decided by the Ey term, and by assuming a parabolic

potential well,

® = Do(1 — —) (3.47)
Ty
eq. {3.46) is reduced to

where Qr = 1/2e®o/Mri is the ion rattle frequency in the parabolic electrostatic

well created by the electrons. In the case when Qp > (1 is satisfied, ions are
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trapped in ® and ‘magnetized’ due to rattling in this potential well. In this
situation, {2x takes the role of the cyclotron frequency, (1;, and 0,76 the role of
the £ x B drift {23].

In the following section, we show the dispersion relations for two cases; (a) ion

cyclotron oscillation and £ x B drift and (b) ion rattle oscillation and Q;r drift.

3.5.1 Ion Cyclotron Oscillation (£;) and Ion E x B Drift

Solving eq. (3.44) for T;, # Ty, x:i is given by[24]

L Ty nlY B L
Xi = k”\%i{l +§nj[1 sl W ) — L0, (3.49)

where z, = ﬁj—?'ﬁ  Api = Ty /drne?, b= kia®, a = QLi\/fEL/M is the finite

Larmor radius (FLR) term, W is the plasma dispersion function and @ = w — kg
<vg;> where <wvg;> is the average ion E x B drift. In the case when k, = 0,2z, < 1

and b > 1 are satisfied, eq. (3.49) is reduced to

2
Wy
i = 2 (3.50)
@
Using the plasma approximation y; = x., where . is given by the fluid calcula-

tion, we get the dispersion relation

1 w* ng
= = . 3.51
k2N w—wp &P ( )

Equation (3.51) is identical to the fluid calculation result as shown in eq. {3.37).

3.5.2 Ion Rattle Oscillation (Qz) and Q;r Drift

When {2y replaces 1; and Q;r drift replaces the £ x B drift, eq. (3.49) becomes

1 Ty nQlg . _
x,—,Cz/\%i{ug[mELQ_HQH}[W(%) 1I(0)e™} (3.52)
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where {0y = m is the ion rattle frequency, Ap; = \/TIW, zl =
%}%ﬁ-, b = kia?, o = ﬁlzm is the ‘effective FLR’ term and @ = w — kg <
vg; > where < vg; >= Q; < Q%(r —rp) > / < 0% > is the mean fluid ion drift
obtained by an appropriate average over the width of the radial eigenstructure
around r,,, and over the ion distribution function [23].

{(a) For k, = 0,2/, < 1 and ¥ >> 1 (i.e., when ion trapping in the radial well
is ignored}), eq. (3.52) reduces to eq. {3.50). Therefore, the dispersion relation is
identical to eq. (3.51) or the fluid calculation result shown in eq. (3.37).

{(b) For k£, ~ 0 and ¥ < 1, which is more appropriate for the experiment, we

get the new dispersion relation

i w* wg,;
= . 3.53
kiIdpw —wp oo+ iv) - Q% ( )

We have introduced a phenomenological damping term v to account for the Lan-
dau type phase mixing which arises for perpendicularly propagating modes when
Qp = Qp(W,); ie., when the electrostatic well is non-parabolic. Equation (3.53)

may be solved to give the results:

2k2
w = ks <uvg > +93'—9
2u*
g v ciki y 1 kG g
+ Z[—§ T\ 3o (wi — ke <wvg >) —Qp + E(V T L (3.54)

‘The most important effect of the ion-rattle in the electrostatic well is the stabi-
lization entering through the Qg term in the square-root. The Landau effect does
not stabilize the mode as may be verified by taking the large v limit; this is under-
standable because the Simon-Hoh instability is known to preserve the instability

in the presence of large ion dissipation [19, 20]. From eq. (3.54) since Q% is smaller
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etk

2
than $-%(wg — ky < vg; >) term, we note that the modified Simon-Hoh mode is
unstable for the beam plasma experiment. The perpendicular phase velocity is
< vg > +ck?/2w*. Unfortunately, < vy > can only be accurately obtained from

a detailed non-local eigenmode analysis.

3.6 Comparison with Other Instabilities

3.6.1 Modified Two-stream Instability (MTSI) and Flute-

like Drift Instability (FDI)

A dispersion relation for the intermediate frequency (w. € w < we, ) electrostatic
instabilities driven by relative electron-ion drift across an external axial magnetic

field[11, 12, 15, 16, 17] is expressed as,

1 + xetxi=0, (3.55)
Xe = wpe Kl @ K + “pe Enky (3.56)
‘ Wi k2 (w— ke )P k? T wee(w — kvge) &%
w?;
. . E— 3.57
Xt (w—kvoi)z, ( ")l)

where k,, = [ng/ng|. When the density gradient term (the third term) is dominant
over the k&, term {the second term) in x., a dispersion relation for the flute-like drift
instability (FDI)[11, 15, 17} is derived. Equation (3.55) is reduced to the modified
two-stream instability (MTSI){12, 15, 16] when the condition is reversed. The
instability that we have observed is k, = 0, %, 5 0 mode. Therefore, it is similar

to the FDI. For the experimental condition of w?, <« w?, k; = 0, eq. (3.56) is
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reduced to

wge”&}?" 1 ol
Xe = = ) :
wWee(w — kvge)  k2A], w — kug,

(3.58)

which is the modified Boltzmann relation for k£, = 0. The dispersion relation
eq. (3.55) is reduced to

I 2‘
L _w T, (3.59)

1 —
+ kzz\%)e w — k‘?}oe (Ld - kU{){)z

We rewrite eq. (3.59) as

(w — kvge)[(w - kvgi)g - u)z L

pil = “mw*(w — ko). (3.60)

When (a) kv, = wp, w & wy and kvy = 0, are satisfied, the FDI has
the maximum growth rate. The maximum growth rate v,,.. is calculated from

eq. (3.60) by assuming w = wy; + 0y ( Y/wp € 1),

. I
(27)(2’7)(2“)?1') = _sz%ew Wi
*, .2
2 _ (.Uwpi
YViow = STERY {3.61)

The FDI 1s understood as an instability caused by a coupling between an electron
E x B drift wave in a nonuniform plasma and an ion plasma oscillation. No
instabilities are found for the conditions (b) w & kuvge, w € wy; and kv, = 0, (¢)
w K kvge , W R wy and kvy; = 0. The modified Simon-Hoh instability (MSHI}
is a new unstable flute mode for (d)} w = kvy; € wy;, kvo.. A growth rate of the

MSHI is calculated from eq. (3.60) by assuming w = kvg; + 0y { v/kve; << 1 ),

1 s
(—kvoe)(—wi-) = “‘mw (37)2
2 o P kAn,  wpkle (3.62)
W w
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This growth rate is exactly the same as the w; shown in eq. (3.39). Many
authors[i1, 12, 15, 16, 17] considered only a relative electron-ion drift vy in their
theory. However, none of them considered vy; and vy, separately, which is nec-
essary to get the proper wg of the MSHI. Unlike the FDI, the MSHI is unstable
even when the plasma approximation (k?A%, < 1) is satisfied, and both the real

and the imaginary part of w are independent of plasma density.

3.6.2 Anti-drift Mode

The anti-drift instability[18] is an intermediate frequency {w,; <€ w <€ w.) elec-
trostatic instability in a weakly ionized inhomogeneous plasma with cold {T}; = 0)
unmagnetized ions. Here we consider three cases as follows:

(a) When k, =0 and E,o = 0, we get

. epw”

T Tw (3.63)
[ -4

ni ed k? c?

In this case, we find a stable mode with a frequency wg = ¢k*/w*. Since w” is in
the denominator, this mode is called the anti-drift mode. Note that this wg is the
same as the second term of the real frequency of the MSHI (different by a factor
of 2).

There are two possible instability mechanisms to make the anti-drift mode
unstable, One is collisions between electrons and the neutral gas, and the other
is relative slippage between electrons and ions caused by the DC electric field.

(b) When k, # 0, E,4 = 0 and electron-neutral collisions are important, we
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get
Ney  epw™ +1k2c2/ven

Neo e w+ ke /ey

(3.65)

where ¢, = /T./m and n;;/n;o is the same as eq. (3.64). This instability is called
the anti-drift instability (ADI), which Fridman predicted in his paper. When
w < w* K k*c /vy, the ADI is reduced to aﬁ ion-sound instability, w = ¢,k (1 +
W Ven [ 2k22)(22].

(c) When E,; # 0,k, = 0 and the ion azimuthal drift is neglected, we also get

an unstable solution which is the same as the MSHI case with ksvg; = 0, i.e.,

wp = k2w

YY) 212 — o
o = [ B = wei cik} ~ ki wp — we) (3.66)
1 s™g w* w*? w* ’ ’

In the case of the MSHI, since kgvp; > c2k?/2w" is satisfied, the instability fre-
quency wg shows a completely different dependence on the plasma parameters
compared to the ADI, even though w; is the same. Therefore, the MSHI is classi-

fied as the ADI with F,s and vg, > vg # 0.
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Chapter 4

Verification of the MSHI

4.1 Introduction

We believe that the MSHI is a candidate for the M; mode. As shown in Chapter
3, the MSHI is unstable when vg > vy, and the real part of the instability
frequency is wg & kgug;. From the results of the ® measurement, vg is a factor
of twenty larger than w;/ks, and as will be seen shortly, the vy measurement
shows vy; &~ wy/ky. Thus, the experimental results are consistent with the MSHI
theory. In this section, first we show results of the vs; measurement. Section 4.3
describes results of a simple calculation of an ion orbit under measured plasma
potential profiles and explain how the ion azimuthal drift velocity vy; = vg/20
is obtained. In section 4.4, an interpretation of the T;; measurement results and
the ion mass dependence of f; is given. Section 4.5 describes a simple expression
for the vg;, and its comparison with the measured drift velocity and the instabilty

phase velocity. In section 4.6, we show experimental verification of the vy; equation
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given in section 4.5.

4.2 vy, Measurement

The ion azimuthal drift velocity vg; is measured by the one-sided probe technique.
A probe is shielded on one side and biased to coliect the ion saturation curreni.
When the probe is faced away from the ion rotation direction, only the ion satu-
ration current, I;, = en;Ac,, is collected. When the probe is faced to the rotation
direction, both I;, and the current caused by ion drift, [;s = en; Avg;, are collected.
The difference in current Al is equal to I;y and related to vy; by ve; = Ale, /L,
Figure 4.1 shows the measured f; and the ion rotation frequency fs;. We
calculate fg; by for = vgike/2m, where kg = 1/ry = 2 cm™! and ry = 0.5 cm is
the radius at which M; amplitude is maximum. We see that fs; shows the same
trend as f; and agrees within a factor of two for the I, (fig. 4.1(a)), P (fig. 4.1(b}))
and B (fig. 4.1{c)) scan cases. In fig. 4.1, fg; is the calculated ion azimuthal drift

frequency. We discuss fg; in section 4.5.

4.3 Orbit Calculation

In order to explain a factor of twenty smaller vg; than vg, we calculate an ion orbit
and velocity using the measured DC plasma potential profiles shown in fig. 2.7(a).
Figure 4.2(a) shows an ion orbit for [, = 100 A assuming that the ion is initially
at rest at = 1 cmm. The ion starts to move radially inward due to the E,o field.

At the central part, it is pushed slightly radially outward due to the vy x By
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force. After passing the center, the ion is decelerated and stops at the same radial
position as the initial position.

Figure 4.2(b) shows vy versus v,. At t = 0, v, = vy = 0 and the ion starts to
gain negative v, and begins to rotate in the clock-wise direction. The ion velocity

v 1s governed by the conservation of energy, t.e.,

2 2
M;@ + %3- = eAO, (4.1)

where A® is the DC plasma potential difference. For most of the time, v, is
dominant over vy because of the nearly straight line orbit. However, when an ion
comes closest to the center, v, becomes zero and vy gets the maximum velocity,

Vémaz- At this point, eq. (4.1) is reduced to

2
MvSmcw

5= eAD. (4.2)

It is this vy that decides the phase velocity of the azimuthally propagating mode
(M)

An initial position dependence of vgma, is plotted in fig. 4.3(a) for the same
potential profile as the fig. 4.2 case. We find that vgnm,, saturates at r > 2 cm,
which is only a factor of three larger than wy/ky. The averaged fluid velocity of
lons, < vp; > seems to show a good agreement with w;/kg. Figure 4.3(b) shows a
variation of vg,e, for the measured @ profiles shown in fig. 2.7(a). The measured
instability phase velocity wy/ky is also shown in the figure. The initial position of
ions is fixed at r = 1.5 cm in the orbit calculation. We see that vpm,, and wy/ks

show a similar dependence on [, and differ by a factor of three.
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4.4 Ion Mass Dependence of f; and T;, Mea-

surement

A clear M~%% dependence of f, is shown in fig. 2.15(b). We explain the reason
for this and discuss the ion perpendicular temperature (7;, ) measurement results.
As mentioned above, the ion motion is governed by the DC potential profile and
is approximated by a straight line. The azimuthal ion velocity, vg, is expressed

by
Muj;

~eAd. {4.3)

Therefore, the instability frequency is expected to have an ion mass dependence

as
2eAD

X M=%, (4.4)

wr A kg < vy >

As shown in fig. 2.9(a), a good agreement between T;; and A® indicate a relation

of the form
M'Ugl'

~eAd ~ kT, . (4.5)

Equation (4.5) suggests that T;; corresponds to the ion perpendicular energy
spread.

The radial position dependence of T; is shown in fig. 2.10. The reason why
the ion kinetic energy or T;, is the largest as we approach the center is simply
that the lons “rattling” in the potential well sample the largest potential difference
there. At larger radii or away from the axis of symmetry the ions give some of

their kinetic energy back to the potential well and therefore are left with a smaller

T:.
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4.5 Finite Ion Larmor Radius Correction of Ion

E x B Drift

Under a plane DC electric field, £y < e7%4%, an averaged ion E x B drift velocity

over the ion gyro-cycle and the Maxwellian distribution in vy is expressed as

vm = 01 h), (4.6)
By

where Iy is the modified Bessel function of the first kind and b = kir},/2 =
k3 T M/ (eBy)*[22]. Now we want to show that eq. (4.6) is a good approximation
for the phase velocity of MSHI or vg; in our cylindrical plasma. We replace z with
r and &, with 1/re, where 7o is a typical scale-length of F,y or the plasma, and

take rp = 1.0 cm. When b = r?,/2r2 < 1, vp; is approximated as

E — b
v R _IE%_._) (4.7)
1]

This is the £ x B velocity with a smali finite Larmor radius (FLR) correction

term. When b > 1, vg; is expressed as

ET{; Te&E,-o (4 8)
Ve ~ = . .
B BVarb  VEIRRIM
We approximate £, and 11 as | Eo | = | =V®q | = k®g = Op/rp and x1;; =~
eAPq. Finally, for the b > 1 case, we get
1 26({)0
;R sz i 9
VEEE S TRN M (4.9)

This velocity is to be interpreted as the ion velocity obtained from the DC plasma

potential.
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Equation (4.6) is shown in fig. 4.4(a) with a solid line as a function of ion to
electron mass ratio, M/m. At M/m < 400, vg; corresponds to the E x B velocity
with a small FLR correction term (eq. (4.7)), and has very weak mass dependence.
At M/m > 400, vg; is given by eq. (4.9) and it shows a 1/v/M dependence. The
solid circle in fig. 4.4(a) shows vg,.., obtained from a simple ion orbit calculation
shown in the previous section. In the figure, measured instability phase velocities,
vy = wy/ky, are also shown (open square). These three quantities, vg;, Vgmae and
vy, agree well each other. The effective ion E x B drift frequency fg; = vgiks/27
calculated from eq. (4.9) is shown in fig. 4.1. We see that fg; agrees particularly
well with the measured instability frequency {f;) for the B scan and with the ion
azimuthal drift frequency (fs) for the 7, scan case. Furthermore, f; shows the
same overall trend with [,, P and B as f; and fs. Therefore, we conclude that
the phase velocity of the M; mode is possibly expressed as vg;, the effective ion
I x B drift velocity for the large Larmor radius.

We believe that eq. (4.6) is good for a wide range of b values, i.e., even for
M /m < 1837, the mass ratio of a hydrogen ion. It is important to understand the
M/m dependence of vy; because later we will show Particles in Cell (PIC) code
computer simulation results calculated with scaled mass ratios M/m = 100 to
800. As shown in fig. 4.4(a), for B = 160 G, vy = E/B is the E' x B drift velocity
for mass ratios M /m < 400. Therefore, there is no velocity difference between the
electrons and ions, and we expect to see no MSHI. In order to excite the MSHI,
we need to increcse the b value or reduce B so that vg; becomes smaller than
vge. Figure 4.4{b) shows B dependence of vg; (in solid line) and calculated vgmaz

(in solid circle) for M/m = 100. At B > 100 G, both vg; and vgmer show 1/B
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dependence and they correspond to vg; = vg. = E.o/B. In order to excite the

MSHI, B < 100 G is required to satisfy the condition vg, > vg; = vg x /A®/M.

4.6 Biased End-plate Experiments

Since the instability frequency is decided by the DC plasma potential, w; o
\/ZXW , we have tried to control AP, The method we have used is to bias
the end-plate. Figure 4.5(a) shows the plasma potential at r = 0 cm, r = 1
cm, and the difference between the two quantities, AP, measured by the emissive
probe as a function of the end-plate bias, Vgp. Figure 4.5(b) shows the instability
frequency, fi, versus Vgp. We find that f; is closely related to A®. The calculated
f1 using the eq. {4.9) is roughly a factor of two smaller than the measured f; but

has a strikingly similar functional dependence on Vigp.

4.7 Summary

The experimental findings can be summarized as follows:

1. The measured ion azimuthal velocity, vg;, is in reasonable agreement with

the phase velocity of the M; mode, v; = w;/ky as expected for the MSHI.

2. By using the measured plasma potential profile, it is found that the calcu-
lated vgmer shows good agreement with v;. In this calculation, it is assumed
that the ions are at rest at the initial position. In the experiments, the ion
orbit is approximated by a straight line with a very small aberration due to

v x B force.
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Figure 4.5: (a) The plasma potential at r = 0 cm, r = 1 cm, and the difference
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related to A®. The calculated f; using the eq. (4.9) is roughly a factor of two
smaller than the measured f; but has a strikingly similar functional dependence
on Vip.
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3. The ion mass dependence of f; and the ion perpendicular temperature, 75,
are measured. It can be shown that they are simply expressed as e AP =~

£T;: = Muv?/2. These results are expected from the orbit calculation.

4. We have shown that the calculated vg; can simply be approximated by the
ion £ x B velocity, vg;, expressed by eq. (4.6), for a wide range of ion mass
ratios, M/m, by assuming «7;) =~ eA®. The measured v, also agrees well
with eq. (4.6). The electron £ x B drift velocity is simply expressed as
vEe = Frof Bo, because of the small electron Larmor radius. A difference of
twenty between the electron £ x B and the ion azimuthal velocity is easily

explained by eq. (4.6).

5. By biasing the end-plate, A® can be controlled. It was shown that the
measured and calculated instability frequencies agree well, when A® is ma-

nipulated in this manner.
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Chapter 5

Transient Study of the MSHI

5.1 Introduction

In our beam-plasma system since the plasma is collisionally ionized by the electron
beam, ions are produced only at the 1 cm diameter beam region. In order to
maintain the broad steady state density profile, which we have shown in chapter
2, ions have to keep diffusing radially. Note that the DC electric field is radially
inward in the direction to retard the ions in the beam region. lons therefore ‘have
to be heated at least on the order of the DC plasma potential (A®) to go outside.
The perpendicular ion temperature T;; was measured by an energy analyzer. We
found that 75, is simply expressed as

2
Mol end (5.1)
5

RT,‘J_ ~

where A® is the DC plasma potential difference in the radial direction. This
equation implies that once ions go outside to the high potential position, they fall

down the potential well and acquire a kinetic energy which corresponds to eA®,
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In our previous measurements which were steady state, there was no evidence
for the radial diffusion of ions. Furthermore, it is not clear how the ions diffuse
out.

We described the MSHI theory and calculated the real part {(wg) and the
imaginary part (w;) of the instability frequency. We studied wg in detail for
various plasma conditions and showed that the measured wpr agrees well with the
theory. However, no measurement was conducted on wy.

In this chapter we discuss time resolved measurements which follow the evo-
lution of the DC parameters of the plasma and the transient study of the growth
phase of the MSHI. We have performed (A) the radial relaxation of the ion and
electron density profiles measurement, (B) the instability onset measurement, and
(C) the instability growth measurement. In order to study (A) and {B), we have
applied a pulsed beam acceleration voltage Vp and measured the temporal evo-
lution of the electron saturation current /., and the ion saturation current I;; at
various radial positions. After a quick turn-on of Vg, the plasma ionization pro-
cess, the ion diffusion process and the growth of the instability process take place.
In the instability onset measurement all these processes are included together.

We have used the biased endplate method to study (C). When a positive bias is
applied to the endplate, the amplitude of the MSHI is strongly suppressed. When
the bias is electrically turned off and the endplate is grounded, the instability
starts growing. In this method, since we are varying the plasma potential but are
maintaining the steady state ionization process, the growth of the mode is clearly
observed.

In the next section we describe the results of (A) the radial relaxation of the ion
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and electron density profiles measurement, (B) the instability onset measurement,

and (C) the instability growth measurement.

5.2 Experiments

5.2.1 Ion Diffusion Measurements

For the ion diffusion measurement, we have applied a pulsed Vg. The rise time
of Vp 1s less than 0.4 us. A fluctuation, whose oscillation period is 1.2 us, is
observed in Vp early in time (t < 8 ps). The maximum fluctuation level at ¢
= 0.4 ps is AVp/Vp = 0.45 and decays in time. This might be caused by the
capacitive effect of the gun. The rise time of [, is 0.4 us. Figure 5.1{(a) shows
the time variation of I;; measured at the high pressure Ar gas (P = 3 x 107
torr) and at the high beam current (I, = 3 mA). Since the ion density is large
(n; ~ 10" cm™) and the instability level is small compared with the DC level at
this plasma condition, we can measure a clear time evolution of ;. In fig. 5.1(a),
I;s measured at seven different radial positions, r==0, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0
cm from the beam center are shown. The results are extremely reproducible for
many different runs. Figure 5.1(b) shows the temporal evolution of the ion radial
density profiles reconstructed from fig. 5.1{a). It is clear that the n; profile is the
same as the beam profile early in time. Then ions start diffusing, and at t = 30
~ 100 ps they reach the steady state. At this state we find the broad ion profile
which is observed in the steady state experiments.

Figure 5.2 shows the time to reach the steady state current level (T};) as a
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Figure 5.1: (a) Time variation of the ion saturation current measured at high
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Figure 5.2: Time for [;, to reach the steady state as a function of r

function of the radial position of the probe. T,, is determined by two methods;
one is the time to reach the 90 % of the saturated [, level (Tso%) and the other
is determined by extrapolating the linear part of the log I, - log t line to the
saturated [, level (Tsq:). The ion diffusion velocity reduced from the slope of the
curve at r > 3 cm is calculated to be ~ 3.4 x 10* cm/s. This velocity is an order
of magnitude lower than the ion acoustic velocity ¢, = 3.1 X 10° cm/s for the T,
=4 eV case.

Figure 5.3(a) shows the atomic mass, A;, dependence of vp;. We see that vp;
is larger for smaller A;. Figure 5.3(b) shows the Ar pressure dependence of the

ion diffusion velocity vp;. It is clear that vp; is larger for lower pressure.
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5.2.2 Instability Onset Measurements

The instability onset measurements have been conducted by applying the pulsed
acceleration voltage Vg as shown in the previous section. We measure the time
variation of the electron saturation current fluctuation at the low pressure {2x107¢
torr < P < 5x10~° torr) where the MSHI is destabilized. Since the plasma density
is low (107 em™ < n; < 10° cm™?), the ion saturation current fluctuation is not

clear compared with the electron saturation current fluctuation.

P Dependence of Instability Onset

Figure 5.4 shows the time history of I, for various Ar pressures measured at r=
0.5 cm. The onset time 7, is shorter for higher P. Figure 5.5(a) shows 7,,,.. as
a function of P. We see that 7,4 i3 inversely proportional to P. The instability

frequency f; and amplitude n; are plotted in fig. 5.5(b) and (c) respectively.

I, Dependence of Instability Onset

Figure 5.6 shows the I, dependence of 7,,,;: measured at r = 0.5 cm. Since P
is high (2 x107* forr), the onset time T, is short. We see that 7,,,.: becomes

shorter for the larger I,.

r Dependence of Instability Onset

Figure 5.7 shows the radial position dependence of the time variation of /.. At
the plasma center (fig. 5.7(a}), the increase in the DC current level is observed
early in time. A fluctuation starts to oscillate roughly 2.5 ps later. At r = 0.5

cm, following a slow increase in the DC current, a clear instability oscillation
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(d) 4.0 x107° torr. The onset time 7,nqe¢ is shorter for higher pressure.
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Figure 5.6: I, dependence of the instability onset time 7,,5,;. We see that 7.,
hecomes shorter for the larger I,. Ar 2 x107° torr,t = 0.5 em .

starts (see fig. 5.7(b)). The amplitude of the oscillation reaches the saturated
level after two cycles. Note that the fluctuation shows almost a 100 % oscillation,
i.e., ny/ng ~ 1. As shown in fig. 5.7(c), at r = 1.0 cm, neither a DC current
increase nor a fluctuation is observed until t o 13 us. A clear oscillation starts
at t > 13 ps and the fluctuation level is already saturated at the first cycle with
nq/ng =~ 0.93. These results implies that at r > 0.5 cm the electrons are pushed

out by the fluctuation.

5.2.3 Instability Growth Measurement

In the previous section, we showed that the plasma potential ® can be controlled

by varying the endplate bias Vgp. Since the MSHI frequency f, depends on @
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Figure 5.7: Radial position dependence of the electron saturation current mea-
sured at (a) r = 0 cm, (b) r = 0.5 cm and (c) r= 1.0 cm. Ar 2 x107° torr, I, =
2000 pA.



Figure 5.8: End-plate bias voltage dependence of the I,. I., shows a significant
increase in the amplitude when Vgp is turned off. Ar 2 x 1077 torr, [, = 2000 gA
and r = 0.5 cm.

as fy o« 9% f, is controlled by Vep. We also found that the amplitude of
the MSHI, n,, strongly depends on Vgp. For example, when the endplate was
positively biased, we observed nearly a 30 dBV lower instability level compared
with the grounded endplate case. In the experiment, we have applied a positive
bias (VEp = 10 ~ 100 V) to the endplate to stabilize the MSHI. Time variations
of I, are measured before and after the bias is electrically turned off and the
endplate is grounded.

Vip is turned off within less than 0.4 us. Figure 5.8 shows a temporal evolution
of I, measured at r = 0.5 cm. The same results are observed by the positively
biased probe. I, shows a significant increase in the amplitude when Vg p is turned
off. 90 % of the saturated amplitude level is observed in the first oscillation of

Ios which occurs 7 us after turning off the Vgp. This implies that the growth
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rate wy is larger than the real part of the i1nstability frequency wg. Note that the
instability frequency is varying in time after turning off Vgp. We believe that
this frequency variation could be due to the temporal variation of the DC radial
plasma potential profile. This issue needs more work in future.

Figure 5.9 shows the instability growth and the instability onset measured for
the same conditions at r = 0.2 ¢cm. The instability onset time 7,,5¢¢ is longer at
the lower P and the lower I, as described in the previous section. The instability
growth time 7,,5u1, however, is always on the order of the instability period, i.e.,
wy = wpg. For example, at Ar P = 2.4 x107° torr, I, = 20 pA, Tonee 15 150 s
(fig. 5.9(c)}, while Tyroues is 5 ps (fig. 5.9(d)). Therefore, the measured P and I,
dependence of the instability onset time, 7., is not explained by the variation
of the instability growth time, 7y,,upn. We believe that this longer 7,,. at the

lower P and the lower I, is caused by the longer ionization time.

5.3 Discussion

5.3.1 JYon Diffusion Mechanisms

First, we consider ambipolar ion diffusion. Since ions diffuse more rapidly across
the B field than the magnetized electrons, one might expect that an ambipolar
electric field would arise to retard the ion diffusion and aid electron diffusion[4,
25]. As a result, a diffusion coefficient might be given by an ambipolar diffusion

coefficient D) 4,
T,

~ Dy (14 =
D4 Le{ +Te)’
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Figure 5.9: End-plate bias voltage dependence of the instability onset and growth.
(a) Onset and (b) growth measurements conducted at Ar 5 x 107° torr, I, = 100
pA and r = 0.2 em. (¢) Onset and (d) growth measurements conducted at Ar
2.4 x 107° torr, [, = 20 pA and r = 0.2 cm. (¢) Tonser 18 150 ps while (d) Tprowen
is 5 ps.
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where D, & Tov,,/(m8),) is the electron perpendicular diffusion coefficient, »,, is
the electron-neutral collision frequency and ), is the electron cyclotron frequency.

The ambipolar diffusion velocity vy 4 is expressed as
via = Diakne, (5.3)

where k. = In'y/n.o| = 3.8 em™!. When T} ~ T,, the calculated v, 4 as a function
of the gas pressure P is v, 4 = 2.3 x 10° P(torr) cm/s. The observed ion diffusion
velocity vp; for P = 107% ~ 1072 torr shown in fig. 5.3 is much smaller than the
calculated velocity of v; 4 = 23 ~ 2.3 x 10° cm/s.

In the derivation of eq. (5.2), we assumed that the diffusion along the B field
1s negligible, i.e., the plasma is infinite in the direction along the B field. It is
pointed out by Simon that when the plasma size is finite along the B field, electrons
can move along the B field and shert-circuit the electric field caused by the ion
diffusion across the B field[26]. As a result, electrons and ions diffuse not with the
ambipolar diffusion coeflicient but with their own diffusion coefficients. This short-
circuit effect is important in short plasma columns with the field lines terminated
by conducting plates{4]. Paulikas and Pyle{28! showed that the condition for the

perpendicular diffusion to be non-ambipolar is given by

£<,/ ! Qe, (5.4)
a akne Ven

where L is the plasma length and « is the plasma radius. For our experimental

conditions, Ar gas, B = 160 G, L = 80 ¢m, a = 5 cm and k,. = 3.8 cm™! case,
eq. (5.4} is reduced to P < 1.2 x 1072 torr. Therefore, we expect to have the

short-circuit effect and the non-ambipolar radial diffusion in our experiments.

87



The ion diffusion coefficient D y; is given by[4]

i
D_Li = Mui;ﬁ ' (55)
14 4+

where Q; is the ion cyclotron frequency and u;, is the ion-neutral collision fre-

quency. The ion diffusion velocity vy, is expressed as
vy = Dk, (5-6)

where k,; = Inly/nip|. When Q;/v;, < 1, which corresponds to the case when P
is large and ions collide with neutrals before they complete a gyrocycle, 1, is

given by

DJ_{ g D“, = MrI; o P-’IM_O'SBO, (57)

Vin

where Dy; is the ion diffusion coefficient parallel to the direction of the B field.
Equation (5.7) is the same as the no magnetic field case. In this case, D ; decreases
with P because of the increased ion-neutral collisions. Since ions are unmagne-
tized, collisions between neutrals slow down the ions. When );/v;,, > 1, which

corresponds to the low P case, D), is given by

D”i _ TiMI/t‘n
(2,;;)2 Te2Re

Vin

Dy~ x PM°* B2, (5.8)

In contrast to the large P case, D, ; increases with P. At this low pressure region,
unless ions collide with the neutral atoms, they simply gyrate and no diffusion
occurs. Therefore, collisions between lons and neutrals are necessary for the dif-
fusion.

Figure 5.10 shows the calculated D ; versus the neutral pressure P for Xe, Ar

and H,. In fig. 5.10(a}, We have assumed that the ion temperature T; is 0.03 eV,
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Figure 5.10: Ion temperature and ion mass dependence of the ion perpendicular
diffusion coeflicient. {a) T; = 0.03 eV and (b) T; = 30 eV.
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a room temperature. At the pressure range of P = 107% ~ 1072 torr, D ; is larger
for larger P and larger atomic mass A;. In our experiment, we have observed that
the ion diffusion velocity vp; decreases with P and also with A; at the pressure
range of P = 107% ~ 1072 torr. Therefore, if the ion temperature is 0.03 eV or ions
are born at the room temperature and no heating occurs, we cannot explain the
measured ion diffusion mechanism. Figure 5.10(b) shows the calculated D ; for T;
= 30 eV case. At the pressure range of P = 107% ~ 1077 torr, D, ; shows a similar
dependence on P and A; as the experimental observations, i.e., D,; decreases
with P and A;. However, disagreements with the experiments occur at the lower
pressure region (P = 107° ~ 107 torr). Furthermore, the absolute number of the
calculated diffusion coefficient at T; = 30 eV is more than two orders of magnitude
larger than the measured coefficient.

As shown in eq. (5.7), when /v, > 1 is satisfied, the transport of ions
across a B field should be reduced by 1/B? in a collisional or a classical theory.
[t was shown that some instabilities enhance the radial loss rates and give rise
to anomalous diffusion or turbulent diffusion. Drummond and Rosenbluth{27]
showed that the two-stream ion cyclotron instability leads to an anomalous radial
diffusion of electrons with a diffusion coefficient similar to the Bohm diffusion co-
efficient, Dg = xT,/16eB,. Paulikas and Pyle{28} studied the current convective
instability in the positive column of the glow discharge and showed that the ex-
perimental results agree fairly well with the predictions made by Kadomtsev and
Nedospasov[29]. Turbulent diffusion arising from the Simon-Hoh instability[19, 20}

was investigated by Thomassen[21].
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Turbulent ion heating caused by instabilities has been studied by many au-
thors. In non-isothermal plasmas (7. > T;), Mah et al. observed a rapid ion
heating caused by an axial electron current driven ion acoustic wave[30]. They
showed that the ion heating stops when the electron drift velocity becomes smaller
than the critical velocity for the growth of the ion acoustic wave, which is decided
by the ion Landau damping. In isothermal plasmas (T, = T}), ion heating caused
by the discrete-spectrum ion cyclotron drift wave {w ~ n{};), continuous-spectrum
ion cyclotron drift wave (w ~ w} » ;) and the two-stream lower-hybrid insta-
bility {w o wrg = wy;) was reported by Yamada et al.[31, 32, 33], where (), wf,
wry and wy; are the ton cyclotron, the ion diamagnetic drift, the lower hybrid
and the ion plasma frequencies, respectively. The ion heating mechanism of the
discrete-spectrum ion cyclotron drift wave (ICDW){31, 33] was explained by the
resonant ion cyclotron damping. They showed that the measured ion heating rate
agrees with the calculated heating rate from the quasilinear theory. In the case of
the continuous-spectrum ICDWI(31, 33! and the lower-hybrid instability{32], they
considered the renormalized quasilinear theory[34] by introducing the nonreso-
nant stochastic heating term. For the lower-hybrid heating case, even though the
instability amplitude showed a discrete-spectrum, stochasticity was introduced
because of the large growth rate of the instability.

We believe that the stochastic heating by the MSHI occurs in our experiments.
In order to resolve this issue, future work in this area should include time resolved

ion temperature measurements.
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Chapter 6

Nonlinear Evolution of the

MSHI

6.1 Introduction

In this chapter, we discuss the nonlinear evolution of the MSHI. As the parameters
I, or P is varied to increase the amplitude of M), a second mode M, with a
frequency f; < f1 appears at the low-frequency end as do sideband modes M,
at fo = fi £ f2. As seen in chapter 2 (see fig. 2.12) the onset of M, and M,
are characterized by a decrease in the amplitude of M; (ny) when I, is used as
the control parameter. Thereafter, as we continue to increase /,, n; continues to
increase monotonically. Whereas n,; and n,, the amplitudes of M; and M,, show a
strong increase when the M, and M, are frequency locked. If the pressure is used
to control the amplitudes of My, M; and M,, n, shows a monotonic increase with

pressure with no discernible drop in its amplitude. However, ny and n, do show
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a strong growth when the M; and M, modes are frequency locked to one another
as in the I, scan. For given I,, as P is increased, the ratio of fi/f, decreases
and exhibits frequency locking at 4, 3 and 2. While M, peaks off-axis, M, has
a peak on axis, and we showed that it is an m = 0 mode. Both f; and f, are
nearly independent of r. While f; scales as 1/ VM, fiis independent of the ion
mass. However, as will be shown ;2’ this chapter, f2 has an excellent correlation
with the “bounce frequency” ie., fo & f, = 5= Ef]\%fﬂ where ¢; is the fluctuating
plasma potential. The correlation of f, with f, would indicate that f, should
have a 1/v/M dependence. However, since ¢; scales as M (see fig. 6.2), fy is
independent of the atomic mass.

We now propose the following interpretation of the above mentioned observa-
tions. As already stated, M; is identified as the modified Simon-Hoh instability
(k. ¢ 0) driven in an inhomogeneous plasma with strongly magnetized electrons
and weakly magnetized ions. When M, attains a sufficiently large amplitude, it
traps a significant number of ions in the wave potential. The M; mode is now
driven modulationally unstable to sideband modes M, with frequencies f; & f,
{(where f; = f,, the bounce frequency of trapped ions) via a nonlinear coupling

introduced by the trapped particles.

6.2 Particle Trapping Instability Theory

We now consider the process of ion trapping in a large amplitude M; mode. Intro-

ducing £ = ky —wt (where y represents the §—coordinate in a slab approximation)
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we get the ion orbit equation
€+ 0%+ 02 + 0} cos €] € = (keVor — )% (6.1)

where wg = \/;W is the ion bounce frequency in the wave potential, ); =
eBy/M is the ion cyclotron frequency and Qp = m is the ion rattle
frequency in the DC parabolic electrostatic well as described in chapter 3. To
get significant ion trapping, we should have w¥ > (Q% + Q2). This would have
been difficult, if the radial electrostatic well were truly parabolic. However, the
M mode maximizes at a radius where ¢’ is already small so that the effective %
is considerably reduced. Thus we find that a ¢, is sufficiently large to result in
significant jon trapping. The RHS of eq. (6.1) shows that ions will stay trapped
for a time At# such that J;_:At ~ (kgVai —w}At ~ 1. The effects we consider below
should therefore take place in times shorter than this time.

We now consider excitation of side-band instabilities by the trapped ions in
the large amplitude M; mode. Following, Kruer et al.[35] and Goldman[36] we

now write the mode-coupling equations for the side-band instability as follows:

] Ey(w, k) =

Ey (w—wmf&‘—ﬁo) (6-2)

Wi

[62(“}_"‘)05&_&0) ] E?(w_woak-‘ko):

Cw—kn) -

wh

Eyw, k) (6.3)

PR
where wi = 4we’ny/M, ny is the ‘density’ of trapped particles and we have

neglected the coupling to the upper sidebands, which is somewhat weaker in the
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experiments. It has been assumed that the coupling effects of the M; mode only
enter through trapped particle effects. The ¢, and ¢, refer to the dielectric response
at frequencies w and w—w, as described above. The dispersion relation is obtained

from the determinant as

w% 1 1

@—E 0, -0} |eas@k) | al—wnk-k)

(6.4)

6.3 Verification of Particle Trapping Instability

In this section, we show experimental evidence for M, and M, being driven by
the particle trapping instability (PTI). In a wave-frame of My, ions are bouncing
azimuthally back and forth in a wave potential of My with the bounce frequency,
fi = ’él; fﬂ%“;ﬁ_ Therefore, in the lab-frame, M,, whose frequency is f, = fy £ fi,
is thought to be the PTI mode driven unstable by trapped ions. M, also satisfies
the dispersion relation of the MSHI, with a somewhat different k3 from M; due
to the radial amplitude peak position shift. Since M, is a resonant plasma mode,
M, shows a large response at f;.

M, mode frequency is a beat frequency of fy and f,, te, fo = fi—f, = fi. My
response is also large because it is at resonance with a kinetic ion mode. As shown
in chapter 2, the wave numbers of M, are k,; = 0, kg2 = 0 and M, is a radially
standing wave (see table 2.2). Similar wave numbers and radial amplitude profiles
(see fig. 2.18) were observed in electrostatic ion cyclotron wave experiments{37].

Instability measurements were conducted by collecting fluctuating electron
current for several plasma conditions by varying I, P and B (see chapter 2). We

have observed that f; scales as f; « /n7 as shown in fig. 2.16(b}). In this section,
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first we show more details on f, scaling on n;. Then we will show ¢; measurement

results and compare f; to f;.

6.3.1 n; Dependence of f;

The P dependence of f; is shown in fig. 6.1(a), which reveals strong P dependence.
The ny dependence of f; is shown in fig. 6.1(b). We find that f; scales as f; N
very well regardless of the pressure variation or plasma condition.

No ion mass (M) dependence is observed in f, (see fig. 2.15(a}). However,
since n; has M dependence (fig. 2.16{(a}), if we plot f; versus n;, f; shows M

dependence for a given n; (fig. 2.16(b)). This implies that n, scales as ny o« M

and f; o \/nl/M o \/M/M x M°.

6.3.2 ¢; Measurements

As we have shown in chapter 3, n; and ¢, are related to each other by the modified

Boltzmann relation as

Motk W @?%?k”kg _ Endn (6.5)
no Te W o= W Te —-%g—kg JECq_‘, ¢ '

where k, = ﬁgm and kg =

- %. If {-:-’1‘1 is a constant, ny scales as ny x ¢

0 ¥
and f; agrees with bounce frequency scaling, f; W In order to show that
f2 = fy, we measured ¢, with the emissive probe described in chapter 2. The
wave potential of the M; mode, ¢,, is obtained from a fluctuating component
of the floating potential of the emissive probe. Figure 6.2(a} shows ¢y and DC

plasma potential difference (A®) between the center and r = 1.5 ~ 2.0 cm. The

¢+ measurement was conducted at the center. Figure 6.2(b) shows measured f,

96



10 T LI N B B B T :1||:=|I T T T

L) |¥]]

L 4

®
®
g
o
[

—_ ®
) ." jdﬂagi ut
T o L i
-
(o]
St [ m{p A & : i -
« O ; ¢ 20x10 7 torr
i B gi.OxiO‘S torr |
j L 56x10 % torr
100 + : |v1|||i 1 { s:s|u§ R
10° 10 10 10°

1
I (nA)

-

' 2.O><IC§_5 torr

U 1.0x1 Q_S torr
(-6

‘ 5.6x10Q T torr
100 T S i b
-90 -80 =70 -60 -50 -40
n (dBV)

Figure 6.1: Ar pressure dependence of (a) f, VS I, and (b) f, VS n;. f, scales as
fa o \/ny very well regardless of the pressure variation.

97



,_4
<
0
e o
o
-
®
®
®
®
Ll

1 l|l‘1|i|

0 -

AD& G (V)
=3
e

o ©

oo O i
o °°
.......v..................n.......v........v..v..v..........v......vn.........-A......,...._A...(a)...._-E

—
<
ilI
O

1 1 P 1 I!lg " Nl ' 1 I.Ii_\i
10° 10° 10*
Ip (HA)

._.
<

bounce : : i

é b :
o o?° L
g @ L

d O 0O
oo

f(kHz )

g
i O oRU
-E

o ' (b)

ot LB ]
1 2 3 4

10 10 Ip(uA) 10 10

e dodeit )

Figure 6.2: I, dependence of (a) A® and ¢; and (b) the calculated fiounce. We
see that f; and f, agree not only in the dependence on I, but also absolute value.

98



LB RRAL LRELELERRLY T R ERLRAE! T T T

T : e
B X 0 ad C)‘
~  f 20°%
> [ - w .
- 0 ® .
e - ; ; O
<] - : .. ] 0o -
- m e o poo o
. H :
1 I ]
10 S 1 0 i |
o . ul IEWETS sl et il
10° 10! 10° 10° 104
[ (uA)
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f2 and calculated f,. We see that f, and f, agree not only in the dependence on
I, but also absolute value.

Figure 6.3 shows the ion mass dependence of A® and ¢;. No ion mass de-
pendence is observed for ¢, while ¢; scales as ¢; x M. As shown in chapter
4, f, scales as fl.oc \/W and ¢ has no ion mass dependence. Therefore, we
find a M~%° dependence on f;. On the other hand, even though f; scales as

f2 o</ /M | since ¢, shows M dependence, no ion mass dependence is observed

for f2 .
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6.4 Mode Coupling

We now give an interpretation of the mode-locking behavior observed in the exper-
iments. The strongest mode-locking effects are observed when w, & w, & w; /2.
This may be directly seen from the mode coupling equations. We can readily

explain these equations in the standard form
iy — wizy = axy(t)z, (6.6)

Fq—wlz, = Bai(t)z, {6.7)

where the space dependencies have been removed by Fourier analysis and we have
retained the time-dependence in z;. For wy; & w,, the two equations become

degenerate; if we introduce z; = \/a/Bz,, one may write

R \/a_ﬁxl(t)]xs = {.

When w, ~ w; /2, we have essentially the unstable Mathieu oscillator, where the
excited frequency is w;/2 over a range of w, given by bw, ~ /aB. This is the
mode-locking behavior observed in the experiment. The mode-locking behavior
at integers other than 2, 1.e., wy = w;/n, corresponds to equations nonlinear in w,
and are beyond the scope of present theory; they are understandably weaker in

experiments,

6.5 Summary

We believe that a finite amplitude M; mode is driven modulationally unstable by

ion trapping effects leading to the excitation of M, modes and the sideband modes
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M,. We have also shown that the final state can be a new periodic oscillation, the
mode-locked state with f, = f, = f;/2. Such a periodic state is likely to be further
modulationally unstable to a low-frequency M3 mode at & frequency fa which will
then migrate and perhaps mode-lock at f»/2 and so on. Thus, what at first sight
appears to be a simple period doubling route of chaos follows a rather complex
path starting at the low-frequency modulational end and finally mode-locking at
the sub-harmonic.

We believe that this scenario of a sequence of modulational instabilities leading
to the turbulent state may be quite generic to plasma systems. In many instances,
the plasma either excites coherent modes or leads to coherent excitations by a
nonlinear condensation of the energy in some wave length regions (e.g. in long
wave length plasmas, long-scale drift vortices in drift wave turbulence, etc.). The
plasma must then find a way of entering the turbulent state through a series of
modulational instabilities. The detailed nonlinear physics of the modulational
instability can be different in different cases. For strong plasmé wave turbulence,
the collapse mechanisms investigated by Zakharov[38] are an example of such
modulational instabilities. In our experiment, there is very clear evidence of such
a sequence of events involving trapped particle effects. This general picture is also
consistent with the picture of onset of chaos it nonlinear oscillators involving sub-
l?%rmonic generation, which can also be looked upon as a series of modulational
instabilities[39].

The physical mechanism of the M; mode (and indeed M, ., modes, where
n = 0,1,2,..) is not yet understood. The M, mode is a m = 0 mode which

has a density peak at the beam center and a rather deep near-null at about the
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beam edge, together with a rapid radial phase change of 180 degrees across the
near-nuil with nearly uniform radial phase elsewhere. The initially most plausible
option for M, a nearly radially propagating ion sound wave mode, seems ruled
out since careful axial measurements show that any axial k, is too small to allow
enough electron flow along the field lines required to nearly shield ion oscillations
in the usual manner. The likely explanation is that it is some sort of hybrid mode
between the electron rich inner core and the very rich ion-kinetic halo.

When there are two modes M; (m = 0 mode) and M, (m = 1 mode) the fact
that their frequencies sum to the MSHI frequency f; together with the fact that
the daughter azimuthal mode numbers also sum to the MSHI mode {0 + 1 = 1},
all point to the parametric decay scenario. Unfortunately, the basic physics of the
two daughter modes is not yet understood. Therefore one cannot yet form the
desired linear mode operators on the mode variables for each daughter mode, let
alone the coupling between the daughter modes and the pump.

On carefully examing the data shown in fig. 2.12, in the vicinity of the onset
of the coupled modes, one notices the sudden drop of the pump, and a rise of
the daughter modes but subsequent steady co-existence of M;, M, and M, all
at comparable levels. Although n; and n, show amplitude peaks when {requency
locking occurs, ny continues to increase monotonically. This suggests that a three-
mode-coupled system is not the whole story. It may be plausible that the beam
plays a critical role in determining the plasma conditions. Since the role of the
beam is neglected in the computer simulations to be discussed next (only electron
and ion profiles are initiated) one perhaps does not expect to see the rich nonlinear

behavior in the simulations.
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Chapter 7

Computer Simulations

In order to get better insights into the MSHI, we have run a 21 dimensional
cylindrical boundary electrostatic particle-in-cell computer simulation, SYLSIM
[40].

The calculations were performed on a 128 x 128 grid with 8000 ions and 8000
electrons. Since the beam electron density is nearly two orders of magnitude
lower than the plasma electron density, we have neglected the beam electron
component. In order to create the DC radial electric field, we have applied different
radial profiles for electrons and ions. Both of them have Maxwellian distribution
functions and Maxwellian density profiles, n; = njo exp(—r*/r% ), where j =i for
ions and 7 = e for electrons. However, r;jp is larger than r.o as observed in the
experiments. In order to satisfy total charge neutrality in 2-D, we have chosen
Tio = neo(Teo/Ti0)?. Initial parameters are M/m = 800, 7,/T; = 100 and wee/wpe

3

= 1. These parameters correspond to r.g = 0.5 cm, rig = 2.0 ¢, 1ep = 10®% em™3,

nip = 6.25 x10° em™3, A® =30V, 7. =4 eV, T, = 0.04 eV and B = 32 G.
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As shown in chapter 4, the instability frequency of the MSHI is decided by the
effective ion Larmor radius term, b = k2 eA®oM/(eB,)?. Since M (M/m = 800)
is two orders of magnitude smaller than the Ar mass (M/m = 7.4 x 10%), we have
chosen a smaller B and a larger A®q in the simulation.

In this code, electrons have positive and ions have negative charge. Therefore,
the DC electric field is radially outward and the F.o x By drift is in the "
direction. The azimuthal charge separation caused by the slower ion drift and
the consequent azimuthal electric field Eg is in the § direction. As a result, the
Ey1 x By velocity is in the 7 direction which enhances the density perturbation.
Therefore, Vng - E:g < {} is an instability condition in the simulation,

Note that because of the positive charge of the electrons, the Boltzmann rela-

tion is expressed as

Ney 8¢
= — 7.1
Tteg Te ( )
Therefore, when the Boltzmann relation is satisfied, we find a 180 degree phase
shift between & and n, oscillations. On the other hand, the modified Boltzmann

relation is expressed as

ey 6(}3 w”
—— ) 7.2
Tieg Tew ~wg (72)

When the condition w < wg is satisfied, eq. (7.2) is reduced to

MNey — %w*

~ 3
Tleg Te wg

(7.3)

and ¢ and n, oscillations are in phase. Since the modified Boltzmann relation
with large F x B drift is satisfied in our experiment, as shown in the theory, we

expect to see ¢ and n, oscillations in phase in the computer simulation. The ¢
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and n; relation is expressed by eq. (3.34} and it is reduced to

2.2
4 — ._.i?». Csky

nie 1. (w— kyvg)? (7-4)
in the simulation.

Figure 7.1 and fig. 7.2 show electron and ion density plots. No clear electron
density structures are observed until t ~ 5000 w;' (fig. 7.1(b)). An elongation
and a rotation of the electron column in the E x B drift direction (-0 direction) is
observed at t > 5000 w, " (fig. 7.1(c), fig. 7.2). It is at this time that the instability
with a clearly defined frequency is observed.

Figure 7.3 shows the time history of the potential fluctuation calculated si-
multaneously with fig. 7.1 and fig. 7.2. The potential fluctuation is collected at
nine cells located 1 cm away from the plasma center. A clear oscillation which
corresponds to the electron column rotation is observed. Figure 7.4 shows the
expanded time history of the potential (¢) fluctuations from t = 8000 to 9000
w;! together with n, and n; fluctuations. As shown in fig. 7.4(a), the n. and
¢ are in phase. This result indicates that the modified Boltzmann relation or
eq. (7.3) is satisfled as we expected. The n; and ¢ are 180 degrees out of phase
(see fig. 7.4(b)) indicating eq. (7.4) is satisfied. In fig. 7.5, ¢ fluctuations observed
in three different azimuthal locations spread 90 degrees from each other and at
the same radial position (r = 1 c¢m) are shown. From the phase delay between the
signals, £y is calculated to be m = 2 mode rather than the m = 1 mode observed
in the experiments.

Figure 7.6 shows trajectories of ions from t = 0 to 2000 w;l for M/m = 100 and

B = 32 G. Trajectories depend on the initial ion positions. Ions which are initially
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Figure 7.1: Electron and ion density plots (1). (a) t = 0, (b) t = 3092 w; ! and
(c) t = 5872 w;'. M/m =800, B =32 G.
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(c)

Figure 7.2: Electron and ion density plots (2). (a) t = 8067.6 w;’, (b) t = 8109.2
wyt and (c) t = 8124.8 w;!. M/m = 800, B = 32 G.
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Figure 7.4: Time history of (a) electron and (b) ion density fluctuations together
with the potential fluctuation. The n, and ¢ are in phase. This result indicates
that the modified Boltzmann relation or eq. {7.3) is satisfied as we expected.
The n; and ¢ are 180 degrees out of phase (see fig. 7.4(b)) indicating eq. (7.4} is
satisfied.
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Figure 7.5: Potential fluctuations measured by three probes separated 90 degrees
each other. 4y is calculated to be m = 2 mode rather than the m = 1 mode
observed in the experiments.
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Figure 7.6: Trajectories of ions from t = 0 to 2000 w; ' for M/m = 100 and B = 32
G. (a) Ions which are initially at large radii where the E field is small (r > 2 cm)
do not come to the central region and no contribution to the MSHI is made. (b)
Ions at the higher E field region (r € 2 cm), however, show star shape trajectories
as predicted in chapter 4. (¢} An ion trajectory which starts from the star shape
and ends up with a circular shape. We believe that this ion is trapped by the
wave potential of the MSHI and contributes to the modulation of the MSHI
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Measured Plasma rotation period T, = 160 (w;,')

Effective ion ExB drift period Tp;i = 294 (w;!
Electron ExB drift period Tge = 44 (w.})
Electron diamagnetic drift period 1™ = 59 (w;!)
Electron cyclotron osc. period Tec = 6.3 (w;!)
lon plasma osc. period Ty = 63 (wy.)
Jon cyclotron osc. period T.; = 630 {w )

Table 7.1: Measured and calculated oscillation periods

at large radii where the E field is small (r > 2 c¢m) do not come to the central
region and no contribution to the MSHI is made (see fig. 7.6{(a)}. lons at the higher
E field region (r < 2 cm), however, show star shape trajectories (fig. 7.6(b)) as
predicted in the previous section. Figure 7.6(c) shows an ion trajectory which
starts from the star shape and ends up with a circular shape. We believe that
this ion is trapped by the wave potential of the MSHI and contributes to the
modulation of the MSHI.

Table 7.1 compares the measured plasma rotation period and the calculated
plasma oscillation periods for M/m = 100 and B = 32 G. Since the E field and
plasma potential (®) are changing in time self-consistently, we calculated the ra-
dial profiles of the E and @ during the steady state oscillation and used them in
TExpe and Tgyp; calculations. The instability period is half the rotation period
because of the instability mode number m = 2. We find that the measured in-
stability period is closest to the effective ion £ x B rotation period and is larger

than the electron £ x B period as expected.
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Chapter 8

Conclusions

An intermediate frequency (f.u < f < fe) electrostatic instability has been ob-
served in an electron beam produced, cylindrical plasma column. We have iden-
tified this instability as a new instability, the modified Simon-Hoh instability
(MSHI), which has an instability mechanism similar to the Simon-Hoh instability
{SHI). This instability can occur in a cylindrical collisionless plasma if a radial
DC electric field exists and if this radial DC electric field and the radial density
gradient are in the same direction. The origin of the DC electric field is found to
be the difference between the ion and the electron radial density profiles. In such
a plasma if the ions are essentially unmagnetized but if the electrons are magne-
tized, a velocity difference in the # direction can arise because of the finite ion
Larmor radius effect. This leads to a space charge separation in the # direction.
The consequent azimuthal electric field Ey; and the enhancement of the density
perturbation by the Fg x By velocity occur in the same manner as in the SHI.

The instability frequency is decided by the ion azimuthal drift velocity. We have
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investigated this new instability through experiments, theory and 2D computer
simulations.

We believe that a finite amplitude modified Simon-Hoh instability is driven
modulationally unstable by ion trapping effects leading to the excitation of M,
modes and the sideband modes M,. The final state can be a new periodic oscil-
lation, the mode-locked state with f, = f, = f;/2. Such a periodic state is likely
to be further modulationally unstable to a low-frequency M3 mode which will
then migrate and perhaps mode-lock at f,/2 and so on. Thus, what at first sight
appears to be a simple period doubling route of chaos follows a rather complex
path starting at the low-frequency modulational end and finally mode-locking at
the sub-harmonic.

There are many unanswered questions in this work. The first 1s how are the
steady state ion and electron density profiles established? What is the ion heating
mechanism that leads to the ion spreading out in the radial directions? Secondly,
what exactly is the nature of the M., modes {n = 0,1,..)7 What is the coupling
rnechanismﬁ between the daughter modes and the pump, M; mode? These are

challenging questions for future work in this area.
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Appendix A

Observation of Other Nonlinear

Evolutions of the MSHI

In this appendix, we show other nonlinear evolution of the modified Simon-Hoh

instability.

A.1 Period Doubling Sequence and Energy Ex-

change

In addition to M, M; and M, modes, sometime we observe a M2 mode with a
frequency f,/2.

Figure A.1(a) shows the I, dependence of the instability frequencies. At I, =
38.9 pA, in addition to My, M, and M, modes (fi/f, = 2.38), a new mode My,
appears al a frequency f;/2, which is clear in fig. A.1(b). At I, = 53.9 uA, M,

and M; are locked at fi/f; = 2 and merge to My, mode. At [, > 74 pA, M, and



Amplitude (dBV )

Figure A.1: I, dependence of {a) instability frequencies, (b) f;/f and (c) ampli-
tudes. Ar 1 x 107° torr, r = 0.3 cm.
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Mj; are unlocked in frequency and f, is now larger than fi/2. My, still exists with
a frequency fi/2. At I, > 300 pA, M, and M, mode amplitudes become smaller
and disappear together at I, = 410 uA (see fig. A.1(c)), while the M;;; mode
amplitude keeps increasing until 1, = 410 zA. Above this I,, M, s; bifurcates into
two modes.

In this sequence we have observed an excitation of M, /2 mode when f; and f;
are getting closer to fy/2 and frequencies are unlocked. According to the nonlinear
evolution which we have described in this thesis, new subharmonic components
appear when a frequency locking occurs. Therefore, what we have shown above
is a different nonlinear evolution of the MSHI, a period doubling sequence.

There are two groups of the subharmonics of fi: Oneis M, ,; and M, modes
whose frequencies are f,4; and f, ., = fi — fuq1, respectively (n = 1,2,...). These
are the modes which we have described in this thesis. The other is A;/,, modes
with frequencies m fy /2, (m,n = 1,2,..}. These modes appear as a result of period
doubling sequence. We have observed an energy exchange between these two
groups as will be shown below.

Figure A.2 shows a sequence of the energy exchange between M, _,, M,
modes and M, modes. In fig. A.2(a) we find frequency components correspond
to fi, fo, fo = i = fo, fiy2s frj2 = foo Jip2 + fs and so on. Note that in this case,
a narrow frequency locking at f,/f; = 18/13 occurs. In fig. A.2(b), we find new
modes M4 and My appear at frequencies fi/4 and 3f;/4, respectively. At the
transition from fig. A.2{a) to fig. A.2(b}, we find that the My and M, amplitudes
increase (-+0.8 dBV and +2.73 dBV, respectively), while, M, and M, amplitudes

decrease (-6.0 dBV and -8.0 dBV, respectively). We believe that the main energy
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Figure A.2: A sequence of an energy exchange between M/, mode and M, o,
M,,,, modes. (a) Vg = 200 V, I, = 210 pA, (b) Vg = 220 V, I, = 220 pA, (c)
Ve =200V, I, = 230 pA and (d} Vg = 190 V, I, = 205 gA. Ar 1 x 107° torr, r
= (.3 cm.
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source to excite My, and Mj, is M;. However, since M, and M, amplitudes
decrease together with the increase in M, amplitude, it is clear that an energy

exchange from M,_3, M, ,, modes to My;,, modes occurs. Figure A.2(c) shows

Sni1
the case when the M; amplitude decreases -0.03 dBV, the My, M3,y and M,
amplitudes decrease more than an order of magnitude {-15.81 dBV, -31.31 dBV
and -20.25 dBV, respectively), together with a nearly an order of magnitude in-
crease in M, and M, mode amplitudes (+9.65 dBV and +10.65 dBV, respectively)
from fig. A.2(b). Note that the amplitudes of the 2f;, 3f;, fi — 2f, and f; — 3f,
components increase ~16 dBV. Finally in fig. A.2(d) when the M; amplitude de-
creases -0.21 dBV, My, My, and My, disappear, while M, and M, increase
+0.02 dBV and +0.04 dBV, respectively. Therefore, we find that an energy ex-

change from M, /3, mode to M,y, and M, ,, modes occurs in the sequence from

fig. A.2(b) to (c), (d).

A.2 Strong Sideband Excitations

As shown in chapter 2 {see fig. 2.11 or fig. 2.13) the amplitudes of the f; component
(M, mode) and the f,_ = f; — fa component {the lower side band, M,_ mode) are
more than an order of magnitude larger than the amplitude of the f,, = fi + f,
component (the upper sideband, M,, mode). In such a case, the excitation of the
M, and the M,_ looks like a parameiric decay in a sense that the sum frequency
of two main daughter modes M, and M,_ is equal to the M; mode frequency,
together with the fact that sum of the azimuthal mode numbers of these daughter

modes 1s that of the M; mode. However, at some experimental conditions, we
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observe a strong excitation of the upper and the lower sidebands modes (M|, and

LN
M,_ modes, respectively) but a very weak excitation of the M, mode. Figure A.3
shows a sequence of an excitation of the sideband modes for an Ar pressure scan.
The experiments are conducted with a plasma length of 17 cm (a movable 5.5
cm in diameter endplate located at 17 ¢m from the gun). The unbiased probe
placed at z = 1 cm from the gun and r = 0.2 cm is used for the measurements.
In fig. A.3(a) we find only a coherent M, mode. Small-amplitude components at
f = 34 kHz and 70 kHz are not signals but pick up noises. When we decrease
the pressure P, the lower and the upper sidebands appear (fig. A.3(b}). Note that
the amplitude of the M, mode is at the noise level and ~15 dBV lower than the
amplitude of the M,_ mode. In fig. A.3(c), we find that not only the first upper
and the lower sidebands (f; £ f;) but also the second sidebands (f; £ 2f,) are
getting larger. In fig. A.3(d), the amplitudes of the f, =+ f; and f; +2f, components
are even larger than the amplitude of the f; component. At P = 8.4 x 107¢ torr,
we find the f; £ nf;/2 components as shown in fig. A.3(e).

In this sequence the amplitude of the M, mode is much smaller than the
upper and the lower sidebands (see fig. A.3(c)). Therefore, we don’t think that
the parametric decay scenario, which is described as the decay of My mode into
My and M,_ modes, is the proper mechanism. A strong excitation of both upper
and the lower sidebands indicates a modulational instability. In this case, the €,
term in the mode coupling equation {eq. (6.4}) should be replaced by the ¢,, term,

the dielectric function of the upper sideband.
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Figure A.3: Ar pressure dependence of a sequence of an excitation of the sideband
modes. (a) P = 5.2 x 107° torr, (b) P = 4.2 x 107% torr, {c) P = 2.5 x 107° torr,
(d) P = 1.4 x 107 torr and {e) P = 8.4 x 107 torr. The plasma length is 17 cm,
I, =25 ~ 34 pA. The unbiased probe is located at r = 0.2 cm and z = 1 cm from
the gun.
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